論文の概要: A Topological Approach for Motion Track Discrimination
- arxiv url: http://arxiv.org/abs/2102.05705v1
- Date: Wed, 10 Feb 2021 19:25:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 14:06:13.162730
- Title: A Topological Approach for Motion Track Discrimination
- Title(参考訳): 運動軌跡識別のためのトポロジカルアプローチ
- Authors: Tegan Emerson, Sarah Tymochko, George Stantchev, Jason A. Edelberg,
Michael Wilson, and Colin C. Olson
- Abstract要約: 我々は,映像系列から抽出したターゲットトラックの特徴を,位相的特徴を識別するデータとして利用する。
特に,広視野映像ストリームから抽出した動線から計算した動的統計量の時間遅延埋め込みから永続的ホモロジーを計算する。
- 参考スコア(独自算出の注目度): 10.72000349055617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting small targets at range is difficult because there is not enough
spatial information present in an image sub-region containing the target to use
correlation-based methods to differentiate it from dynamic confusers present in
the scene. Moreover, this lack of spatial information also disqualifies the use
of most state-of-the-art deep learning image-based classifiers. Here, we use
characteristics of target tracks extracted from video sequences as data from
which to derive distinguishing topological features that help robustly
differentiate targets of interest from confusers. In particular, we calculate
persistent homology from time-delayed embeddings of dynamic statistics
calculated from motion tracks extracted from a wide field-of-view video stream.
In short, we use topological methods to extract features related to target
motion dynamics that are useful for classification and disambiguation and show
that small targets can be detected at range with high probability.
- Abstract(参考訳): 対象物を含む画像サブ領域に存在する空間情報が不足し、相関に基づく手法によりシーンに存在する動的空間と区別されるため、範囲での小さなターゲットの検出は困難である。
さらに、この空間情報の欠如は、最先端のディープラーニングイメージベースの分類器の使用を損なう。
ここでは,ビデオシーケンスから抽出したターゲットトラックの特徴をデータとして用いて,関心の対象をコンフューザーと強く区別するトポロジカルな特徴を抽出する。
特に,広視野映像ストリームから抽出した動きトラックから算出した動的統計量の時間遅延埋め込みから持続的ホモロジーを計算する。
要するに、トポロジカル手法を用いて、分類や曖昧化に有用な目標運動ダイナミクスに関連する特徴を抽出し、確率の高い範囲で小目標を検出できることを示します。
関連論文リスト
- Leveraging Activations for Superpixel Explanations [2.8792218859042453]
ディープニューラルネットワークの説明ツールキットでは、サリエンシ手法が標準となっている。
本稿では,ディープニューラルネットワーク画像分類器の活性化からセグメンテーションを抽出することで,セグメンタへの依存を避けることを目的とする。
我々のいわゆるNuro-Activated Superpixels(NAS)は、モデルの予測に関連する入力に対する関心領域を分離することができる。
論文 参考訳(メタデータ) (2024-06-07T13:37:45Z) - Holistic Representation Learning for Multitask Trajectory Anomaly
Detection [65.72942351514956]
そこで本研究では,異なる時間帯における骨格軌跡の包括的表現による予測運動の学習を提案する。
我々は、時間的閉鎖された軌道を符号化し、ブロックされたセグメントの潜在表現を共同学習し、異なる時間的セグメントにわたる期待運動に基づいて軌道を再構築する。
論文 参考訳(メタデータ) (2023-11-03T11:32:53Z) - Multimodal Graph Learning for Deepfake Detection [10.077496841634135]
既存のディープフェイク検出器は、堅牢性と一般化を達成する上でいくつかの課題に直面している。
本稿では,マルチモーダルグラフ学習(MGL)という新しいフレームワークを提案する。
提案手法は,ディープフェイク検出のための特徴を効果的に識別し,活用することを目的としている。
論文 参考訳(メタデータ) (2022-09-12T17:17:49Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
ビデオ異常は、モーション表現、オブジェクトのローカライゼーション、アクション認識など、多くのサブタスクを解決するため、困難なタスクである。
伝統的に、この課題に対する解決策は、これらの特徴の空間的接続を無視しながら、ビデオフレームとその低次元特徴のマッピングに焦点を当ててきた。
最近のソリューションでは、K-Meansのようなハードクラスタリング技術を用いてこれらの空間的接続を分析することや、潜伏した特徴を一般的な理解にマップするためにニューラルネットワークを適用することに焦点を当てている。
潜在特徴空間における映像異常を解決するために,このタスクを密度推定問題に転送するための深い確率モデルを提案する。
論文 参考訳(メタデータ) (2020-12-02T19:16:22Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z) - Applying r-spatiogram in object tracking for occlusion handling [16.36552899280708]
映像追跡の目的は、動画シーケンス内の移動対象を正確に特定し、そのシーケンスの特徴空間内の非ターゲットから目標を識別することである。
本稿では,オブジェクトモデリング,オブジェクト検出とローカライゼーション,モデル更新という,参照モデルの3つの主要コンポーネントで構成される多くのトラッカーの基本概念を用いる。
論文 参考訳(メタデータ) (2020-03-18T02:42:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。