論文の概要: Leveraging Activations for Superpixel Explanations
- arxiv url: http://arxiv.org/abs/2406.04933v1
- Date: Fri, 7 Jun 2024 13:37:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 13:51:43.667734
- Title: Leveraging Activations for Superpixel Explanations
- Title(参考訳): 超画素説明におけるアクティベーションの活用
- Authors: Ahcène Boubekki, Samuel G. Fadel, Sebastian Mair,
- Abstract要約: ディープニューラルネットワークの説明ツールキットでは、サリエンシ手法が標準となっている。
本稿では,ディープニューラルネットワーク画像分類器の活性化からセグメンテーションを抽出することで,セグメンタへの依存を避けることを目的とする。
我々のいわゆるNuro-Activated Superpixels(NAS)は、モデルの予測に関連する入力に対する関心領域を分離することができる。
- 参考スコア(独自算出の注目度): 2.8792218859042453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Saliency methods have become standard in the explanation toolkit of deep neural networks. Recent developments specific to image classifiers have investigated region-based explanations with either new methods or by adapting well-established ones using ad-hoc superpixel algorithms. In this paper, we aim to avoid relying on these segmenters by extracting a segmentation from the activations of a deep neural network image classifier without fine-tuning the network. Our so-called Neuro-Activated Superpixels (NAS) can isolate the regions of interest in the input relevant to the model's prediction, which boosts high-threshold weakly supervised object localization performance. This property enables the semi-supervised semantic evaluation of saliency methods. The aggregation of NAS with existing saliency methods eases their interpretation and reveals the inconsistencies of the widely used area under the relevance curve metric.
- Abstract(参考訳): ディープニューラルネットワークの説明ツールキットでは、サリエンシ手法が標準となっている。
画像分類器に特有な最近の進歩は、領域ベースの説明を新しい手法か、あるいはアドホックなスーパーピクセルアルゴリズムを用いて確立された説明を適応させることによって研究している。
本稿では,ネットワークを微調整することなく,ディープニューラルネットワーク画像分類器の活性化からセグメンテーションを抽出することにより,これらのセグメンタへの依存を回避することを目的とする。
我々のいわゆるNuro-Activated Superpixels(NAS)は、モデルの予測に関連する入力に対する関心領域を分離することができる。
この性質は、半教師付きサリエンシ手法のセマンティック評価を可能にする。
既存のサリエンシ手法によるNASの集約は、それらの解釈を緩和し、関連曲線計量の下で広く使われている領域の不整合を明らかにする。
関連論文リスト
- Chan-Vese Attention U-Net: An attention mechanism for robust
segmentation [7.159201285824689]
標準CNNアーキテクチャによって与えられるセグメンテーションマスクをより正確に制御するために,Chan-Veseエネルギー最小化を用いた新しいアテンションゲートを提案する。
本研究により,ニューラルネットワークが保持する空間情報を関心領域で観測し,二分節分割における競合結果を得ることができた。
論文 参考訳(メタデータ) (2023-06-28T11:00:57Z) - ECLAD: Extracting Concepts with Local Aggregated Descriptors [6.470466745237234]
そこで本研究では,CNNアクティベーションマップの画素ワイドアグリゲーションから得られた表現に基づいて,概念の自動抽出とローカライズを行う手法を提案する。
本稿では,主成分の画素単位のアノテーションを用いた合成データセットに基づく概念抽出手法の検証手法を提案する。
論文 参考訳(メタデータ) (2022-06-09T14:25:23Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection [0.9883261192383611]
本稿では,グローバルな文脈学習に非局所的注意ブロックを利用するGated Context Attention Network (GCA-Net)を提案する。
提案手法は,複数のベンチマークデータセットにおいて,平均4.2%-5.4%のAUCで最先端のネットワークより優れていることを示す。
論文 参考訳(メタデータ) (2021-12-08T14:13:14Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
本稿では,リモートセンシング画像(RSI-Net)のセマンティックセグメンテーションのための2ストリームディープニューラルネットワークを提案する。
実験はVayhingen、Potsdam、Gaofen RSIデータセットで実施されている。
その結果,6つの最先端RSIセマンティックセグメンテーション法と比較して,総合的精度,F1スコア,カッパ係数において,RSI-Netの優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-19T15:57:20Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z) - Medical Image Segmentation via Unsupervised Convolutional Neural Network [1.6396833577035679]
半教師なしまたは非教師付きで訓練可能な,新しい学習ベースセグメンテーションモデルを提案する。
我々は畳み込みニューラルネットワーク(ConvNet)を介してエッジのないアクティブ輪郭(ACWE)フレームワークをパラメータ化する。
本手法は単一光子放射CT(SPECT)画像の文脈で高速で高品質な骨分割を実現する。
論文 参考訳(メタデータ) (2020-01-28T03:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。