Development of Crop Yield Estimation Model using Soil and Environmental
Parameters
- URL: http://arxiv.org/abs/2102.05755v1
- Date: Wed, 10 Feb 2021 22:02:13 GMT
- Title: Development of Crop Yield Estimation Model using Soil and Environmental
Parameters
- Authors: Nisar Ahmed, Hafiz Muhammad Shahzad Asif, Gulshan Saleem, Muhammad
Usman Younus
- Abstract summary: The study is conducted on tea forms operating under National Tea Research Institute, Pakistan.
The parameters collected are minimum and maximum temperature, humidity, rainfall, PH level of the soil.
The designed model is based on an ensemble of neural networks and provided an R-squared of 0.9461 and RMSE of 0.1204.
- Score: 0.6980357450216633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crop yield is affected by various soil and environmental parameters and can
vary significantly. Therefore, a crop yield estimation model which can predict
pre-harvest yield is required for food security. The study is conducted on tea
forms operating under National Tea Research Institute, Pakistan. The data is
recorded on monthly basis for ten years period. The parameters collected are
minimum and maximum temperature, humidity, rainfall, PH level of the soil,
usage of pesticide and labor expertise. The design of model incorporated all of
these parameters and identified the parameters which are most crucial for yield
predictions. Feature transformation is performed to obtain better performing
model. The designed model is based on an ensemble of neural networks and
provided an R-squared of 0.9461 and RMSE of 0.1204 indicating the usability of
the proposed model in yield forecasting based on surface and environmental
parameters.
Related papers
- SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso [0.0]
The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision.
The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset.
The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%.
arXiv Detail & Related papers (2024-04-16T04:17:17Z) - Generative weather for improved crop model simulations [0.0]
We propose a new method to construct generative models for long-term weather forecasts.
Results show significant improvement from the conventional method.
For individual crop modellers to start applying the method to their problems, technical details are carefully explained.
arXiv Detail & Related papers (2024-03-31T02:03:28Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Learning Generative Models for Lumped Rainfall-Runoff Modeling [3.69758875412828]
This study presents a novel generative modeling approach to rainfall-runoff modeling, focusing on the synthesis of realistic daily catchment runoff time series.
Unlike traditional process-based lumped hydrologic models, our approach uses a small number of latent variables to characterize runoff generation processes.
In this study, we trained the generative models using neural networks on data from over 3,000 global catchments and achieved prediction accuracies comparable to current deep learning models.
arXiv Detail & Related papers (2023-09-18T16:07:41Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - A Three-regime Model of Network Pruning [47.92525418773768]
We use temperature-like and load-like parameters to model the impact of neural network (NN) training hyper parameters on pruning performance.
A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance.
Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model.
arXiv Detail & Related papers (2023-05-28T08:09:25Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
Changes in climatic factors, such as changes in temperature, wind speed, sunshine hours, humidity, and solar radiation can have a significant impact on the evaporation process.
The aim of this study is to investigate the feasibility of several machines learning (ML) models for modeling the monthly pan evaporation estimation.
arXiv Detail & Related papers (2021-10-10T10:06:16Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Crop Yield Prediction Integrating Genotype and Weather Variables Using
Deep Learning [8.786816847837976]
We use historical performance records from Uniform Soybean Tests (UST) in North America spanning 13 years of data to build a Long Short Term Memory - Recurrent Neural Network based model to dissect and predict genotype response in multiple environments.
We deploy this deep learning framework as a 'hypotheses generation tool' to unravel GxExM relationships.
We envision broad applicability of this approach (via conducting sensitivity analysis and "what-if" scenarios) for soybean and other crop species under different climatic conditions.
arXiv Detail & Related papers (2020-06-24T16:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.