Causal Inference for Time series Analysis: Problems, Methods and
Evaluation
- URL: http://arxiv.org/abs/2102.05829v1
- Date: Thu, 11 Feb 2021 03:26:11 GMT
- Title: Causal Inference for Time series Analysis: Problems, Methods and
Evaluation
- Authors: Raha Moraffah, Paras Sheth, Mansooreh Karami, Anchit Bhattacharya,
Qianru Wang, Anique Tahir, Adrienne Raglin, Huan Liu
- Abstract summary: Time series data is a collection of chronological observations which is generated by several domains such as medical and financial fields.
We focus on two causal inference tasks, i.e., treatment effect estimation and causal discovery for time series data.
- Score: 11.925605453634638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series data is a collection of chronological observations which is
generated by several domains such as medical and financial fields. Over the
years, different tasks such as classification, forecasting, and clustering have
been proposed to analyze this type of data. Time series data has been also used
to study the effect of interventions over time. Moreover, in many fields of
science, learning the causal structure of dynamic systems and time series data
is considered an interesting task which plays an important role in scientific
discoveries. Estimating the effect of an intervention and identifying the
causal relations from the data can be performed via causal inference. Existing
surveys on time series discuss traditional tasks such as classification and
forecasting or explain the details of the approaches proposed to solve a
specific task. In this paper, we focus on two causal inference tasks, i.e.,
treatment effect estimation and causal discovery for time series data, and
provide a comprehensive review of the approaches in each task. Furthermore, we
curate a list of commonly used evaluation metrics and datasets for each task
and provide in-depth insight. These metrics and datasets can serve as
benchmarks for research in the field.
Related papers
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Review of Data-centric Time Series Analysis from Sample, Feature, and Period [37.33135447969283]
A good time-series dataset is advantageous for the model's accuracy, robustness, and convergence.
The emergence of data-centric AI represents a shift in the landscape from model refinement to prioritizing data quality.
We systematically review different data-centric methods in time series analysis, covering a wide range of research topics.
arXiv Detail & Related papers (2024-04-24T00:34:44Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - An End-to-End Time Series Model for Simultaneous Imputation and Forecast [14.756607742477252]
We develop an end-to-end time series model that aims to learn the inference relation and make a multiple-step ahead forecast.
Our framework trains jointly two neural networks, one to learn the feature-wise correlations and the other for the modeling of temporal behaviors.
arXiv Detail & Related papers (2023-06-01T15:08:22Z) - A Survey on Causal Discovery Methods for I.I.D. and Time Series Data [4.57769506869942]
Causal Discovery (CD) algorithms can identify the cause-effect relationships among the variables of a system from related observational data.
We present an extensive discussion on the methods designed to perform causal discovery from both independent and identically distributed (I.I.D.) data and time series data.
arXiv Detail & Related papers (2023-03-27T09:21:41Z) - Causal Discovery from Temporal Data: An Overview and New Perspectives [6.251443497694126]
Analyzing temporal data is extremely valuable for various applications.
causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task.
In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions.
arXiv Detail & Related papers (2023-03-17T16:45:01Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - Deep learning for time series classification [2.0305676256390934]
Time series analysis allows us to visualize and understand the evolution of a process over time.
Time series classification consists of constructing algorithms dedicated to automatically label time series data.
Deep learning has emerged as one of the most effective methods for tackling the supervised classification task.
arXiv Detail & Related papers (2020-10-01T17:38:40Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.