Are Large Language Models Useful for Time Series Data Analysis?
- URL: http://arxiv.org/abs/2412.12219v1
- Date: Mon, 16 Dec 2024 02:47:44 GMT
- Title: Are Large Language Models Useful for Time Series Data Analysis?
- Authors: Francis Tang, Ying Ding,
- Abstract summary: Time series data plays a critical role across diverse domains such as healthcare, energy, and finance.
This study investigates whether large language models (LLMs) are effective for time series data analysis.
- Score: 3.44393516559102
- License:
- Abstract: Time series data plays a critical role across diverse domains such as healthcare, energy, and finance, where tasks like classification, anomaly detection, and forecasting are essential for informed decision-making. Recently, large language models (LLMs) have gained prominence for their ability to handle complex data and extract meaningful insights. This study investigates whether LLMs are effective for time series data analysis by comparing their performance with non-LLM-based approaches across three tasks: classification, anomaly detection, and forecasting. Through a series of experiments using GPT4TS and autoregressive models, we evaluate their performance on benchmark datasets and assess their accuracy, precision, and ability to generalize. Our findings indicate that while LLM-based methods excel in specific tasks like anomaly detection, their benefits are less pronounced in others, such as forecasting, where simpler models sometimes perform comparably or better. This research highlights the role of LLMs in time series analysis and lays the groundwork for future studies to systematically explore their applications and limitations in handling temporal data.
Related papers
- Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
Large Language Models have demonstrated impressive performance in many pivotal web applications such as sensor data analysis.
In this study, we assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection.
Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data.
arXiv Detail & Related papers (2024-10-16T07:47:31Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
This study highlights the key challenges that large language models encounter in the context of time series prediction.
The empirical results indicate that while large language models can perform well in zero-shot forecasting for certain datasets, their predictive accuracy diminishes notably when confronted with diverse time series data and traditional signals.
arXiv Detail & Related papers (2024-08-09T05:13:03Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.
We find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance.
In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Review of Data-centric Time Series Analysis from Sample, Feature, and Period [37.33135447969283]
A good time-series dataset is advantageous for the model's accuracy, robustness, and convergence.
The emergence of data-centric AI represents a shift in the landscape from model refinement to prioritizing data quality.
We systematically review different data-centric methods in time series analysis, covering a wide range of research topics.
arXiv Detail & Related papers (2024-04-24T00:34:44Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.