論文の概要: Neural BRDF Representation and Importance Sampling
- arxiv url: http://arxiv.org/abs/2102.05963v1
- Date: Thu, 11 Feb 2021 12:00:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 14:18:23.120099
- Title: Neural BRDF Representation and Importance Sampling
- Title(参考訳): 神経BRDF表現と重要度サンプリング
- Authors: Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, Tim Weyrich
- Abstract要約: 本稿では,リフレクタンスBRDFデータのコンパクトなニューラルネットワークによる表現について述べる。
BRDFを軽量ネットワークとして符号化し,適応角サンプリングによる学習手法を提案する。
複数の実世界のデータセットから等方性および異方性BRDFの符号化結果を評価する。
- 参考スコア(独自算出の注目度): 79.84316447473873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Controlled capture of real-world material appearance yields tabulated sets of
highly realistic reflectance data. In practice, however, its high memory
footprint requires compressing into a representation that can be used
efficiently in rendering while remaining faithful to the original. Previous
works in appearance encoding often prioritised one of these requirements at the
expense of the other, by either applying high-fidelity array compression
strategies not suited for efficient queries during rendering, or by fitting a
compact analytic model that lacks expressiveness. We present a compact neural
network-based representation of BRDF data that combines high-accuracy
reconstruction with efficient practical rendering via built-in interpolation of
reflectance. We encode BRDFs as lightweight networks, and propose a training
scheme with adaptive angular sampling, critical for the accurate reconstruction
of specular highlights. Additionally, we propose a novel approach to make our
representation amenable to importance sampling: rather than inverting the
trained networks, we learn an embedding that can be mapped to parameters of an
analytic BRDF for which importance sampling is known. We evaluate encoding
results on isotropic and anisotropic BRDFs from multiple real-world datasets,
and importance sampling performance for isotropic BRDFs mapped to two different
analytic models.
- Abstract(参考訳): 実世界の物質外観の制御されたキャプチャは、高度に現実的な反射率データの集計セットを得る。
しかし実際には、その高いメモリフットプリントは、オリジナルに忠実でありながら、レンダリングに効率的に使用できる表現に圧縮する必要がある。
レンダリング中に効率的なクエリに適さない高忠実度のアレイ圧縮戦略を適用するか、表現力に欠けるコンパクトな分析モデルを適用するかのいずれかによって、外観符号化の以前の作業は、多くの場合、これらの要件の1つを優先しました。
本稿では, BRDFデータをコンパクトなニューラルネットワークで表現し, 高精度な再構成と, 反射率の補間を組み込んだ効率的な実用的なレンダリングを実現する。
BRDFを軽量ネットワークとしてエンコードし、スペクトルハイライトの正確な再構築に不可欠なアダプティブアンギュラサンプリングによるトレーニングスキームを提案します。
さらに,重要サンプリングに適応する新しい手法を提案する。トレーニングされたネットワークを逆転するのではなく,重要サンプリングが知られている解析BRDFのパラメータにマッピング可能な埋め込みを学習する。
複数の実世界のデータセットから得られた異方性および異方性BRDFの符号化結果と、2つの異なる解析モデルにマッピングされた異方性BRDFのサンプリング性能を評価する。
関連論文リスト
- Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
現在のハイパースペクトル異常検出(HAD)ベンチマークデータセットは、低解像度、単純なバックグラウンド、検出データの小さなサイズに悩まされている。
これらの要因は、ロバスト性の観点からよく知られた低ランク表現(LRR)モデルの性能も制限する。
我々は、複雑なシナリオにおけるHADアルゴリズムの堅牢性を改善するために、新しいHADベンチマークデータセットであるAIR-HADを構築した。
論文 参考訳(メタデータ) (2024-02-23T14:15:58Z) - Learning Image Deraining Transformer Network with Dynamic Dual
Self-Attention [46.11162082219387]
本稿では,動的二重自己アテンション(DDSA)を用いた画像デコライニング変換器を提案する。
具体的には、トップk近似計算に基づいて、最も有用な類似度値のみを選択し、スパースアテンションを実現する。
また,高品質な定位結果を得るためのより正確な表現を実現するために,新しい空間拡張フィードフォワードネットワーク(SEFN)を開発した。
論文 参考訳(メタデータ) (2023-08-15T13:59:47Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
現在の物体検出器は、通常マルチレベル特徴融合(MFF)のための特徴ピラミッド(FP)モジュールを持つ。
我々は,既存のFPがより優れたMFF結果を提供するのに役立つ,新しい,効率的なコンテキストモデリング機構を提案する。
特に,包括的文脈を2種類の表現に分解・凝縮して高効率化を図っている。
論文 参考訳(メタデータ) (2022-07-14T01:45:03Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Invertible Neural BRDF for Object Inverse Rendering [27.86441556552318]
本稿では,新しいニューラルネットワークに基づくBRDFモデルと,オブジェクト逆レンダリングのためのベイズフレームワークを提案する。
多数の測定データに基づいて, 可逆性ニューラルBRDFモデルの精度を実験的に検証した。
結果は、ディープニューラルネットワークが逆問題に挑戦するのに役立つ新しい方法を示している。
論文 参考訳(メタデータ) (2020-08-10T11:27:01Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。