論文の概要: Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2501.03737v1
- Date: Tue, 07 Jan 2025 12:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:46:50.340865
- Title: Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction
- Title(参考訳): MRI再建のための再可視化型デュアルドメイン自己監督型ディープ・アンフォールディング・ネットワーク
- Authors: Hao Zhang, Qi Wang, Jian Sun, Zhijie Wen, Jun Shi, Shihui Ying,
- Abstract要約: 本稿では、これらの問題に対処するために、新しい再視覚的二重ドメイン自己教師型深層展開ネットワークを提案する。
エンド・ツー・エンドの再構築を実現するために,シャンブルとポック・プロキシ・ポイント・アルゴリズム(DUN-CP-PPA)に基づく深層展開ネットワークを設計する。
高速MRIおよびIXIデータセットを用いて行った実験により,本手法は再建性能において最先端の手法よりも有意に優れていることが示された。
- 参考スコア(独自算出の注目度): 48.30341580103962
- License:
- Abstract: Magnetic Resonance Imaging (MRI) is widely used in clinical practice, but suffered from prolonged acquisition time. Although deep learning methods have been proposed to accelerate acquisition and demonstrate promising performance, they rely on high-quality fully-sampled datasets for training in a supervised manner. However, such datasets are time-consuming and expensive-to-collect, which constrains their broader applications. On the other hand, self-supervised methods offer an alternative by enabling learning from under-sampled data alone, but most existing methods rely on further partitioned under-sampled k-space data as model's input for training, resulting in a loss of valuable information. Additionally, their models have not fully incorporated image priors, leading to degraded reconstruction performance. In this paper, we propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues when only under-sampled datasets are available. Specifically, by incorporating re-visible dual-domain loss, all under-sampled k-space data are utilized during training to mitigate information loss caused by further partitioning. This design enables the model to implicitly adapt to all under-sampled k-space data as input. Additionally, we design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction, incorporating imaging physics and image priors to guide the reconstruction process. By employing a Spatial-Frequency Feature Extraction (SFFE) block to capture global and local feature representation, we enhance the model's efficiency to learn comprehensive image priors. Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は臨床で広く用いられているが、長期の取得時間に悩まされている。
ディープラーニング手法は,獲得を加速し,有望な性能を示すために提案されているが,教師付き方法でのトレーニングには高品質な完全サンプルデータセットに依存している。
しかし、そのようなデータセットは時間がかかり、コストがかかるため、より広範なアプリケーションを制限する。
一方、自己教師型手法は、アンダーサンプルデータのみから学習できるようにすることで代替手段を提供するが、既存のほとんどの手法は、モデルがトレーニングする入力として、さらに分割されたアンダーサンプル付きk空間データに依存しており、結果として貴重な情報が失われる。
さらに、それらのモデルには画像の事前処理が完全に組み込まれておらず、復元性能の低下につながっている。
本稿では、アンダーサンプドデータセットが利用可能である場合にのみ、これらの問題に対処する、新しい可視2次元自己教師型ディープアンフォールディングネットワークを提案する。
具体的には、再視認可能な二重ドメイン損失を組み込むことで、トレーニング中にアンダーサンプルのk空間データを全て利用して、さらなる分割による情報損失を軽減する。
この設計により、モデルが暗黙的にすべてのアンダーサンプリングされたk空間データに入力として適応できる。
さらに,Chambolle と Pock Proximal Point Algorithm (DUN-CP-PPA) をベースとした深部展開ネットワークを設計し,画像物理と画像前処理を組み込んで再構築プロセスの導出を行う。
空間周波数特徴抽出(SFFE)ブロックを用いてグローバルな特徴表現と局所的な特徴表現を捉えることにより,包括的画像先行学習の効率を向上させる。
高速MRIおよびIXIデータセットを用いて行った実験により,本手法は再建性能において最先端の手法よりも有意に優れていることが示された。
関連論文リスト
- Score-based Generative Priors Guided Model-driven Network for MRI Reconstruction [14.53268880380804]
そこで本研究では,モデル駆動型ネットワークトレーニングの先駆的な先駆的手法として,ナイーブなSMLDサンプルが用いられる新しいワークフローを提案する。
まず,予備指導画像(PGI)としてサンプルを生成するために,事前学習スコアネットワークを採用した。
第2のステップでは,PGIからアーティファクトやノイズを粗く除去するデノナイジングモジュール(DM)を設計した。
第3に、より詳細な詳細を復元するために、識別されたPGIによって誘導されるモデル駆動ネットワークを設計した。
論文 参考訳(メタデータ) (2024-05-05T14:56:34Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Conditioning Generative Latent Optimization for Sparse-View CT Image Reconstruction [0.5497663232622965]
生成潜在最適化フレームワーク(cGLO)に対する教師なし条件付きアプローチを提案する。
この手法は、複数のトレーニングデータセットサイズと様々な視角を用いて、フルドーズスパース・ビューCTでテストされる。
論文 参考訳(メタデータ) (2023-07-31T13:47:33Z) - CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction [4.967600587813224]
k空間データをMRIでアンサンプすることでスキャン時間が短縮されるが、画像再構成において課題が生じる。
CAMP-Net は,MRI の高速化のためのアンロール型 Consistency-Aware Multi-Prior Network を提案する。
論文 参考訳(メタデータ) (2023-06-20T02:21:45Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Self-Supervised Learning for MRI Reconstruction with a Parallel Network
Training Framework [24.46388892324129]
提案手法は柔軟であり,既存のディープラーニング手法にも適用可能である。
本手法の有効性を、オープン脳MRIデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-26T06:09:56Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。