Removing leakage-induced correlated errors in superconducting quantum
error correction
- URL: http://arxiv.org/abs/2102.06131v1
- Date: Thu, 11 Feb 2021 17:11:11 GMT
- Title: Removing leakage-induced correlated errors in superconducting quantum
error correction
- Authors: M. McEwen, D. Kafri, Z. Chen, J. Atalaya, K. J. Satzinger, C.
Quintana, P. V. Klimov, D. Sank, C. Gidney, A. G. Fowler, F. Arute, K. Arya,
B. Buckley, B. Burkett, N. Bushnell, B. Chiaro, R. Collins, S.Demura, A.
Dunsworth, C. Erickson, B. Foxen, M. Giustina, T. Huang, S. Hong, E. Jeffrey,
S. Kim, K.Kechedzhi, F. Kostritsa, P. Laptev, A. Megrant, X. Mi, J. Mutus, O.
Naaman, M. Neeley, C. Neill, M.Niu, A. Paler, N. Redd, P. Roushan, T. C.
White, J. Yao, P. Yeh, A. Zalcman, Yu Chen, V. N.Smelyanskiy, John M.
Martinis, H. Neven, J. Kelly, A. N. Korotkov, A. G. Petukhov and R. Barends
- Abstract summary: Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated.
Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states.
We find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number.
- Score: 1.8397027011844889
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing can become scalable through error correction, but logical
error rates only decrease with system size when physical errors are
sufficiently uncorrelated. During computation, unused high energy levels of the
qubits can become excited, creating leakage states that are long-lived and
mobile. Particularly for superconducting transmon qubits, this leakage opens a
path to errors that are correlated in space and time. Here, we report a reset
protocol that returns a qubit to the ground state from all relevant higher
level states. We test its performance with the bit-flip stabilizer code, a
simplified version of the surface code for quantum error correction. We
investigate the accumulation and dynamics of leakage during error correction.
Using this protocol, we find lower rates of logical errors and an improved
scaling and stability of error suppression with increasing qubit number. This
demonstration provides a key step on the path towards scalable quantum
computing.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Effectiveness of Variable Distance Quantum Error Correcting Codes [1.0203602318836442]
We show that quantum programs can tolerate non-trivial errors and still produce usable output.
In addition, we propose using variable strength (distance) error correction, where overhead can be reduced by only protecting more sensitive parts of the quantum program with high distance codes.
arXiv Detail & Related papers (2021-12-19T02:45:18Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.