論文の概要: Causal Discovery of a River Network from its Extremes
- arxiv url: http://arxiv.org/abs/2102.06197v1
- Date: Thu, 11 Feb 2021 18:57:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-12 14:18:35.881266
- Title: Causal Discovery of a River Network from its Extremes
- Title(参考訳): 河川網の極端部からの因果的発見
- Authors: Ngoc Mai Tran and Johannes Buck and Claudia Kl\"uppelberg
- Abstract要約: ハイデン川問題の解法としてQTreeを提案する。
QTreeは有向グラフを返却し、Danube上でほぼ完璧なリカバリを達成する。
欠落したデータを扱うことができ、自動パラメータチューニング手順を持ち、時間$O(n |V|2)$で実行される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference for extremes aims to discover cause and effect relations
between large observed values of random variables. Over the last years, a
number of methods have been proposed for solving the Hidden River Problem, with
the Danube data set as benchmark. In this paper, we provide \QTree, a new and
simple algorithm to solve the Hidden River Problem that outperforms existing
methods. \QTree\ returns a directed graph and achieves almost perfect recovery
on the Danube as well as on new data from the Lower Colorado River. It can
handle missing data, has an automated parameter tuning procedure, and runs in
time $O(n |V|^2)$, where $n$ is the number of observations and $|V|$ the number
of nodes in the graph. \QTree\ relies on qualitative aspects of the max-linear
Bayesian network model.
- Abstract(参考訳): 極限に対する因果推論は、ランダム変数の大きい観測値間の因果関係を発見することを目的とする。
過去数年間、ドナウデータセットをベンチマークとして、Hidden River問題を解決するための多くの方法が提案されてきた。
本稿では,既存の手法より優れたハイデン川問題の解法である,新しい簡単なアルゴリズムである \QTree を提案する。
\QTree\ は有向グラフを返し、ドナウ川とコロラド川下流からの新しいデータでほぼ完全な回復を達成します。
欠落したデータを扱うことができ、自動パラメータチューニング手順を持ち、時間$O(n |V|^2)$で実行し、$n$は観測数、$|V|$はグラフ内のノード数である。
\qtree\ は最大線形ベイズネットワークモデルの質的側面に依存する。
関連論文リスト
- Improved Analysis of Sparse Linear Regression in Local Differential
Privacy Model [38.66115499136791]
局所微分プライバシー(LDP)モデルにおける疎線形回帰の問題を再考する。
そこで本研究では,この問題の第一種である革新的NLDPアルゴリズムを提案する。
その結果, 疎線形回帰問題における非私的ケース, 中央DPモデル, 局所DPモデルとの基本的差異が明らかとなった。
論文 参考訳(メタデータ) (2023-10-11T10:34:52Z) - On the Unlikelihood of D-Separation [69.62839677485087]
解析的な証拠として、大きなグラフ上では、d-分離は存在が保証されたとしても珍しい現象である。
PCアルゴリズムでは、その最悪ケース保証がスパースグラフで失敗することが知られているが、平均ケースでも同じことが言える。
UniformSGSでは、既存のエッジに対してランニング時間が指数的であることが知られているが、平均的な場合、それは既存のほとんどのエッジにおいても期待されるランニング時間であることを示す。
論文 参考訳(メタデータ) (2023-03-10T00:11:18Z) - Detection-Recovery Gap for Planted Dense Cycles [72.4451045270967]
期待帯域幅$n tau$とエッジ密度$p$をエルドホス=R'enyiグラフ$G(n,q)$に植え込むモデルを考える。
低次アルゴリズムのクラスにおいて、関連する検出および回復問題に対する計算しきい値を特徴付ける。
論文 参考訳(メタデータ) (2023-02-13T22:51:07Z) - Diffusion Models for Causal Discovery via Topological Ordering [20.875222263955045]
emphTopological ordering approachは、グラフ空間ではなく置換を探索することによって因果発見の最適化空間を減少させる。
ANMsの場合、データログのようなemphHessianは、葉ノードを因果グラフで見つけるのに使用することができ、トポロジ的順序付けを可能にする。
ニューラルネットワークを再トレーニングすることなく、学習したヘッセンを更新する理論を導入し、サンプルのサブセットによる計算が注文の正確な近似を与えることを示す。
論文 参考訳(メタデータ) (2022-10-12T13:36:29Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
本稿では,因果図形モデルにおける最適な介入順序を設計する問題について検討する。
グラフの構造は知られており、ノードは$N$である。
頻繁性(UCBベース)とベイズ的設定に2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T16:21:31Z) - Graph Neural Network Bandits [89.31889875864599]
グラフ構造データ上で定義された報酬関数を用いた帯域最適化問題を考察する。
この設定の主な課題は、大きなドメインへのスケーリングと、多くのノードを持つグラフへのスケーリングである。
グラフニューラルネットワーク(GNN)を用いて報酬関数を推定できることを示す。
論文 参考訳(メタデータ) (2022-07-13T18:12:36Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Understanding over-squashing and bottlenecks on graphs via curvature [17.359098638324546]
オーバースカッシング(Over-squashing)は、$k$ホップの隣人の数が、$k$で急速に増加する現象である。
我々は新しいエッジベースの曲率を導入し、負の湾曲したエッジがオーバースカッシングの原因であることを証明した。
また,オーバーカッシングを緩和するための曲率に基づく再配線法を提案し,実験的に検証した。
論文 参考訳(メタデータ) (2021-11-29T13:27:56Z) - Inferring Hidden Structures in Random Graphs [13.031167737538881]
本研究では,ランダムなグラフ上に植えられた群集群集の検出と復元の2つの推論問題について検討する。
我々は、パラメータ $(n,k,q)$ や $Gamma_k$ の特定の性質の観点から、構造を検出・復元するための下限を導出し、これらの下限を達成するための計算学的に最適なアルゴリズムを示す。
論文 参考訳(メタデータ) (2021-10-05T09:39:51Z) - RaWaNet: Enriching Graph Neural Network Input via Random Walks on Graphs [0.0]
グラフニューラルネットワーク(GNN)の人気が高まっており、グラフで表されるデータに対して非常に有望な結果を示している。
本稿では,3つの選択された長さに基づいて,グラフのランダムなウォークデータ処理を提案する。すなわち,グラフ上の局所的および大域的ダイナミクスを捉えるために,長さ1,2の(正規)ウォークと長さ0,1$の分節ウォークを提案する。
本手法は, 処理ノードの特徴をネットワークに渡すことによって, 様々な分子データセット上で検証し, 分類および回帰処理を行う。
論文 参考訳(メタデータ) (2021-09-15T20:04:01Z) - Oblivious sketching for logistic regression [72.42202783677811]
本稿では,ロジスティック回帰のための最初のデータ難読スケッチを示す。
私たちのスケッチは速く、シンプルで、実装も簡単です。
論文 参考訳(メタデータ) (2021-07-14T11:29:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。