論文の概要: Continuum: Simple Management of Complex Continual Learning Scenarios
- arxiv url: http://arxiv.org/abs/2102.06253v1
- Date: Thu, 11 Feb 2021 20:29:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 18:29:24.313686
- Title: Continuum: Simple Management of Complex Continual Learning Scenarios
- Title(参考訳): 継続性: 複雑連続学習シナリオの簡易管理
- Authors: Arthur Douillard and Timoth\'ee Lesort
- Abstract要約: 連続学習は、非IDデータの設定に特化した機械学習サブフィールドである。
継続的な学習の課題は、データ分散ドリフトに対処しながら、増え続ける知識を学習できるアルゴリズムを作ることである。
データローダの小さなエラーはアルゴリズムの結果に重大な影響を与える。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning is a machine learning sub-field specialized in settings
with non-iid data. Hence, the training data distribution is not static and
drifts through time. Those drifts might cause interferences in the trained
model and knowledge learned on previous states of the data distribution might
be forgotten. Continual learning's challenge is to create algorithms able to
learn an ever-growing amount of knowledge while dealing with data distribution
drifts.
One implementation difficulty in these field is to create data loaders that
simulate non-iid scenarios. Indeed, data loaders are a key component for
continual algorithms. They should be carefully designed and reproducible. Small
errors in data loaders have a critical impact on algorithm results, e.g. with
bad preprocessing, wrong order of data or bad test set. Continuum is a simple
and efficient framework with numerous data loaders that avoid researcher to
spend time on designing data loader and eliminate time-consuming errors. Using
our proposed framework, it is possible to directly focus on the model design by
using the multiple scenarios and evaluation metrics implemented. Furthermore
the framework is easily extendable to add novel settings for specific needs.
- Abstract(参考訳): 連続学習は、非IDデータの設定に特化した機械学習サブフィールドである。
したがって、トレーニングデータ分布は静的ではなく、時間を通じてドリフトする。
これらのドリフトはトレーニングされたモデルに干渉を引き起こす可能性があり、データ分布の以前の状態について学んだ知識は忘れられる可能性があります。
継続的な学習の課題は、データ分散ドリフトに対処しながら、増え続ける知識を学習できるアルゴリズムを作ることである。
これらの分野における1つの実装難しさは、非iidシナリオをシミュレートするデータローダを作成することである。
実際、データローダは継続的なアルゴリズムの重要なコンポーネントです。
慎重に設計し再現しなければなりません。
データローダの小さなエラーは、例えばアルゴリズムの結果に重大な影響を与える。
悪い前処理、間違ったデータの順序、悪いテストセットで。
Continuumは、データローダを多数備えたシンプルで効率的なフレームワークで、研究者がデータローダの設計に時間を費やすことを避け、時間を要するエラーを取り除く。
提案フレームワークでは,複数のシナリオと実装された評価メトリクスを用いて,モデル設計に直接注目することが可能である。
さらにフレームワークは簡単に拡張でき、特定のニーズに新しい設定を追加できる。
関連論文リスト
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
時系列予測は多くの現実世界の応用において重要である。
従来の予測技術は、データが不足しているか、全く利用できない場合に苦労する。
近年の進歩は、このようなタスクに大規模な基礎モデルを活用することが多い。
論文 参考訳(メタデータ) (2024-11-24T07:44:39Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
この論文は、現代の機械学習のいくつかのデータ感度を探求する。
まず、トレーニングデータで測定された事前の人間の識別をMLが符号化するのを防ぐ方法について論じる。
次に、トレーニング中に予測忠実度を提供するが、デプロイ時に信頼性が低い突発的特徴を含むデータから学習する問題について論じる。
論文 参考訳(メタデータ) (2023-12-19T20:49:28Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
本稿では、すでに訓練済みの予測器に対するデータセットの一部の影響を除去するために特別に設計された機械学習の概念を紹介する。
局所モデルパラメータ変化の感度を影響関数とサンプル再重み付けを用いて評価することにより,性能認識アルゴリズムを提案する。
リアルな負荷データセットを用いて,線形,CNN,Mixerベースの負荷予測器上で,未学習アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-08-28T08:50:12Z) - Federated Learning for Data Streams [12.856037831335994]
フェデレートラーニング(FL)は、IoTデバイスやスマートフォンが生成するデータ量の増加に対して、マシンラーニングモデルをトレーニングするための効果的なソリューションである。
フェデレートされた学習に関するこれまでの作業は、トレーニング開始前に収集された静的データセットでクライアントが動作することを前提としている。
本稿では,経験的リスク最小化によるデータストリームから学習する一般FLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-04T11:10:48Z) - On Measuring the Intrinsic Few-Shot Hardness of Datasets [49.37562545777455]
トレーニング済みのモデルに対して、データセットに固有の数ショットの硬さを示す。
そこで我々は,数発の学習が可能な直感をとらえる,シンプルで軽量な尺度"Spread"を提案する。
我々の測定基準は、既存の硬さの概念に比べて数発の硬さを考慮し、計算が8~100倍高速である。
論文 参考訳(メタデータ) (2022-11-16T18:53:52Z) - Discrete Key-Value Bottleneck [95.61236311369821]
ディープニューラルネットワークは、データストリームがi.d.d.であり、ラベル付きデータが豊富である分類タスクでうまく機能する。
この課題に対処した強力なアプローチの1つは、手軽に利用可能なデータ量に対する大規模なエンコーダの事前トレーニングと、タスク固有のチューニングである。
しかし、新しいタスクを考えると、多くの重みを微調整する必要があるため、エンコーダの重みを更新することは困難であり、その結果、以前のタスクに関する情報を忘れてしまう。
この問題に対処するモデルアーキテクチャを提案し,個別かつ学習可能なキー値符号のペアを含む離散的ボトルネックの上に構築する。
論文 参考訳(メタデータ) (2022-07-22T17:52:30Z) - The Challenges of Continuous Self-Supervised Learning [40.941767578622745]
自己教師付き学習(SSL)は、表現学習における主要なボトルネックの1つ、すなわち人間のアノテーションの必要性を取り除くことを目的としている。
このような連続的なセットアップに対する現在の手法の直接的な適用は、計算量と必要なデータ量の両方において非効率であることを示す。
本稿では,非効率性や時間的相関の問題を緩和する手法として,リプレイバッファの利用を提案する。
論文 参考訳(メタデータ) (2022-03-23T20:05:06Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。