論文の概要: How Far Should We Look Back to Achieve Effective Real-Time Time-Series
Anomaly Detection?
- arxiv url: http://arxiv.org/abs/2102.06560v1
- Date: Fri, 12 Feb 2021 14:51:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 13:05:14.465707
- Title: How Far Should We Look Back to Achieve Effective Real-Time Time-Series
Anomaly Detection?
- Title(参考訳): 有効なリアルタイム時系列異常検出を実現するには, どれくらいを振り返るべきか?
- Authors: Ming-Chang Lee, Jia-Chun Lin, and Ernst Gunnar Gran
- Abstract要約: 異常検出は、予期せぬ事象やデータの異常を識別するプロセスである。
RePAD (Real-time Proactive Anomaly Detection algorithm) は上記の全ての特徴を持つ一般的な手法である。
歴史的データポイントの差がRePADの性能に与える影響は明らかでない。
- 参考スコア(独自算出の注目度): 1.0437764544103274
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection is the process of identifying unexpected events or
ab-normalities in data, and it has been applied in many different areas such as
system monitoring, fraud detection, healthcare, intrusion detection, etc.
Providing real-time, lightweight, and proactive anomaly detection for time
series with neither human intervention nor domain knowledge could be highly
valuable since it reduces human effort and enables appropriate countermeasures
to be undertaken before a disastrous event occurs. To our knowledge, RePAD
(Real-time Proactive Anomaly Detection algorithm) is a generic approach with
all above-mentioned features. To achieve real-time and lightweight detection,
RePAD utilizes Long Short-Term Memory (LSTM) to detect whether or not each
upcoming data point is anomalous based on short-term historical data points.
However, it is unclear that how different amounts of historical data points
affect the performance of RePAD. Therefore, in this paper, we investigate the
impact of different amounts of historical data on RePAD by introducing a set of
performance metrics that cover novel detection accuracy measures, time
efficiency, readiness, and resource consumption, etc. Empirical experiments
based on real-world time series datasets are conducted to evaluate RePAD in
different scenarios, and the experimental results are presented and discussed.
- Abstract(参考訳): 異常検出は、予期せぬ事象やデータの異常を識別するプロセスであり、システム監視、不正検出、医療、侵入検知など、さまざまな分野で適用されてきた。
人的介入やドメイン知識のない時系列に対して、リアルタイム、軽量、かつ積極的な異常検出を提供することは、人的労力を削減し、災害発生前に適切な対策を行うことができるため、非常に価値があります。
repad(real-time proactive anomaly detection algorithm)は,上記の機能をすべて備えた汎用的なアプローチである。
リアルタイムかつ軽量な検出を実現するため、RePADはLong Short-Term Memory (LSTM) を使用して、短期的な履歴データポイントに基づいて、各データポイントが異常かどうかを検出します。
しかし、異なる量の履歴データポイントがRePADのパフォーマンスにどの程度影響するかは不明である。
そこで本稿では,新しい検出精度尺度,時間効率,即応性,資源消費などをカバーする一連の性能指標を導入することで,リパッドにおけるさまざまな履歴データの影響について検討する。
実世界の時系列データセットに基づく実験実験を行い,様々なシナリオにおけるRePADの評価を行い,実験結果について考察した。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - PATE: Proximity-Aware Time series anomaly Evaluation [3.0377067713090633]
従来のパフォーマンスメトリクスは、IDデータを仮定し、複雑な時間的ダイナミクスと時系列異常の特定の特性をキャプチャできない。
本稿では、予測と異常区間の時間的関係を組み込んだ新しい評価指標であるPATE(Proximity-Aware Time series anomaly Evaluation)を紹介する。
合成および実世界のデータセットを用いた実験は、より合理的で正確な評価を提供する上で、PATEの優位性を示している。
論文 参考訳(メタデータ) (2024-05-20T15:06:36Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Effective Abnormal Activity Detection on Multivariate Time Series
Healthcare Data [8.84352369893021]
本稿では,効率的な表現学習と異常行動検出のための残差に基づく異常検出手法Rs-ADを提案する。
本手法を実世界の歩行データセット上で評価し,実験結果からF1スコアが0.839であることを示す。
論文 参考訳(メタデータ) (2023-09-11T22:08:09Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time
Recurrent Time Series [1.0437764544103274]
本稿では,Long Short-Term Memory(LSTM)と呼ばれる特殊タイプのリカレントニューラルネットワークに基づく自己適応型軽量異常検出手法であるSALADを紹介する。
2つの実世界のオープンソース時系列データセットに基づく実験により、SALADは他の5つの最先端の異常検出アプローチよりも精度が高いことが示された。
さらに、結果はSALADが軽量であり、コモディティマシンにデプロイできることも示しています。
論文 参考訳(メタデータ) (2021-04-19T10:36:23Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for
Time Series [0.27528170226206433]
本稿では,リアルタイム・レディ・トゥ・ゴー・プロアクティブ・異常検出アルゴリズムReReを紹介する。
ReReは2つの軽量Long Short-Term Memory (LSTM)モデルを使用して、次のデータポイントが異常であるか否かを予測し、共同で判断する。
実世界の時系列データセットに基づく実験は、リアルタイム異常検出におけるReReの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-05T21:26:24Z) - RePAD: Real-time Proactive Anomaly Detection for Time Series [0.27528170226206433]
RePADはLong Short-Term Memory (LSTM)に基づくストリーミング時系列のリアルタイム能動異常検出アルゴリズムである
検出しきい値を時間とともに動的に調整することにより、RePADは時系列におけるマイナーパターンの変更を許容し、前向きまたは時間的に異常を検出することができる。
論文 参考訳(メタデータ) (2020-01-24T09:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。