Universal Adversarial Perturbations for Malware
- URL: http://arxiv.org/abs/2102.06747v1
- Date: Fri, 12 Feb 2021 20:06:10 GMT
- Title: Universal Adversarial Perturbations for Malware
- Authors: Raphael Labaca-Castro, Luis Mu\~noz-Gonz\'alez, Feargus Pendlebury,
Gabi Dreo Rodosek, Fabio Pierazzi, Lorenzo Cavallaro
- Abstract summary: Universal Adversarial Perturbations (UAPs) identify noisy patterns that generalize across the input space.
We explore the challenges and strengths of UAPs in the context of malware classification.
We propose adversarial training-based mitigations using knowledge derived from the problem-space transformations.
- Score: 15.748648955898528
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning classification models are vulnerable to adversarial examples
-- effective input-specific perturbations that can manipulate the model's
output. Universal Adversarial Perturbations (UAPs), which identify noisy
patterns that generalize across the input space, allow the attacker to greatly
scale up the generation of these adversarial examples. Although UAPs have been
explored in application domains beyond computer vision, little is known about
their properties and implications in the specific context of realizable
attacks, such as malware, where attackers must reason about satisfying
challenging problem-space constraints.
In this paper, we explore the challenges and strengths of UAPs in the context
of malware classification. We generate sequences of problem-space
transformations that induce UAPs in the corresponding feature-space embedding
and evaluate their effectiveness across threat models that consider a varying
degree of realistic attacker knowledge. Additionally, we propose adversarial
training-based mitigations using knowledge derived from the problem-space
transformations, and compare against alternative feature-space defenses. Our
experiments limit the effectiveness of a white box Android evasion attack to
~20 % at the cost of 3 % TPR at 1 % FPR. We additionally show how our method
can be adapted to more restrictive application domains such as Windows malware.
We observe that while adversarial training in the feature space must deal
with large and often unconstrained regions, UAPs in the problem space identify
specific vulnerabilities that allow us to harden a classifier more effectively,
shifting the challenges and associated cost of identifying new universal
adversarial transformations back to the attacker.
Related papers
- Improving Adversarial Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations [3.7937308360299116]
Machine learning (ML) has demonstrated significant advancements in Android malware detection (AMD)
However, the resilience of ML against realistic evasion attacks remains a major obstacle for AMD.
In this study, we propose a domain adaptation technique to improve the generalizability of AMD by aligning the distribution of malware samples and AEs.
arXiv Detail & Related papers (2024-08-27T17:01:12Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - ExploreADV: Towards exploratory attack for Neural Networks [0.33302293148249124]
ExploreADV is a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks.
We show that our system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks.
arXiv Detail & Related papers (2023-01-01T07:17:03Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
Adversarial attacks pose safety and security concerns for deep learning applications.
We construct Adrial Response Characteristics (ARC) features to reflect the model's gradient consistency.
Our method is intuitive, light-weighted, non-intrusive, and data-undemanding.
arXiv Detail & Related papers (2022-05-19T14:26:50Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version] [18.3238686304247]
We propose a general formalization for adversarial ML evasion attacks in the problem-space.
We propose a novel problem-space attack on Android malware that overcomes past limitations in terms of semantics and artifacts.
Our results demonstrate that "adversarial-malware as a service" is a realistic threat.
arXiv Detail & Related papers (2019-11-05T23:39:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.