Improving Adversarial Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations
- URL: http://arxiv.org/abs/2408.16025v1
- Date: Tue, 27 Aug 2024 17:01:12 GMT
- Title: Improving Adversarial Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations
- Authors: Hamid Bostani, Zhengyu Zhao, Veelasha Moonsamy,
- Abstract summary: Machine learning (ML) has demonstrated significant advancements in Android malware detection (AMD)
However, the resilience of ML against realistic evasion attacks remains a major obstacle for AMD.
In this study, we propose a domain adaptation technique to improve the generalizability of AMD by aligning the distribution of malware samples and AEs.
- Score: 3.7937308360299116
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning (ML) has demonstrated significant advancements in Android malware detection (AMD); however, the resilience of ML against realistic evasion attacks remains a major obstacle for AMD. One of the primary factors contributing to this challenge is the scarcity of reliable generalizations. Malware classifiers with limited generalizability tend to overfit spurious correlations derived from biased features. Consequently, adversarial examples (AEs), generated by evasion attacks, can modify these features to evade detection. In this study, we propose a domain adaptation technique to improve the generalizability of AMD by aligning the distribution of malware samples and AEs. Specifically, we utilize meaningful feature dependencies, reflecting domain constraints in the feature space, to establish a robust feature space. Training on the proposed robust feature space enables malware classifiers to learn from predefined patterns associated with app functionality rather than from individual features. This approach helps mitigate spurious correlations inherent in the initial feature space. Our experiments conducted on DREBIN, a renowned Android malware detector, demonstrate that our approach surpasses the state-of-the-art defense, Sec-SVM, when facing realistic evasion attacks. In particular, our defense can improve adversarial robustness by up to 55% against realistic evasion attacks compared to Sec-SVM.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - How to Train your Antivirus: RL-based Hardening through the Problem-Space [22.056941223966255]
Adversarial training, the sole defensive technique that can confer empirical robustness, is not applicable out of the box in this domain.
We introduce a novel Reinforcement Learning approach for constructing adversarial examples, a constituent part of adversarially training a model against evasion.
arXiv Detail & Related papers (2024-02-29T10:38:56Z) - MalPurifier: Enhancing Android Malware Detection with Adversarial
Purification against Evasion Attacks [19.68134775248897]
MalPurifier exploits adversarial purification to eliminate perturbations independently, resulting in attack mitigation in a light and flexible way.
Experimental results on two Android malware datasets demonstrate that MalPurifier outperforms the state-of-the-art defenses.
arXiv Detail & Related papers (2023-12-11T14:48:43Z) - Mitigating Adversarial Vulnerability through Causal Parameter Estimation
by Adversarial Double Machine Learning [33.18197518590706]
Adversarial examples derived from deliberately crafted perturbations on visual inputs can easily harm decision process of deep neural networks.
We introduce a causal approach called Adversarial Double Machine Learning (ADML) which allows us to quantify the degree of adversarial vulnerability for network predictions.
ADML can directly estimate causal parameter of adversarial perturbations per se and mitigate negative effects that can potentially damage robustness.
arXiv Detail & Related papers (2023-07-14T09:51:26Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
Adversarial attacks pose safety and security concerns for deep learning applications.
We construct Adrial Response Characteristics (ARC) features to reflect the model's gradient consistency.
Our method is intuitive, light-weighted, non-intrusive, and data-undemanding.
arXiv Detail & Related papers (2022-05-19T14:26:50Z) - Universal Adversarial Perturbations for Malware [15.748648955898528]
Universal Adversarial Perturbations (UAPs) identify noisy patterns that generalize across the input space.
We explore the challenges and strengths of UAPs in the context of malware classification.
We propose adversarial training-based mitigations using knowledge derived from the problem-space transformations.
arXiv Detail & Related papers (2021-02-12T20:06:10Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.