論文の概要: Towards automatic extraction and validation of on-street parking spaces
using park-out events data
- arxiv url: http://arxiv.org/abs/2102.06758v1
- Date: Fri, 12 Feb 2021 20:22:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 15:41:44.772300
- Title: Towards automatic extraction and validation of on-street parking spaces
using park-out events data
- Title(参考訳): パークアウトイベントデータを用いた路上駐車スペースの自動抽出と検証
- Authors: Martin Gebert and J.-Emeterio Navarro-B
- Abstract要約: 路上駐車スペースに有効なマップを自動作成する2つの手法を提案する。
1つ目は空間アグリゲーション、もう1つは機械学習アルゴリズムを使用する。
我々は,ベルリン市内の地区での結果を示し,元の不均衡データから92%の分類精度を報告した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article proposes two different approaches to automatically create a map
for valid on-street car parking spaces. For this, we use park-out events data
from car2go. The first one uses spatial aggregation and the second a machine
learning algorithm. For the former, we chose rasterization and road sectioning;
for the latter we chose decision trees. We compare the results of these
approaches and discuss their advantages and disadvantages. Furthermore, we show
our results for a neighborhood in the city of Berlin and report a
classification accuracy of 92% on the original imbalanced data. Finally, we
discuss further work; from gathering more data over a longer period of time to
fitting spatial Gaussian densities to the data and the usage of apps for manual
validation and annotation of parking spaces to improve ground truth data.
- Abstract(参考訳): 本稿では,路上駐車場に有効な地図を自動作成するための2つのアプローチを提案する。
そのため、car2goのパークアウトイベントデータを使用します。
1つ目は空間アグリゲーション、もう1つは機械学習アルゴリズムを使用する。
前者はラスタ化と道路分割を選択し、後者は決定木を選択しました。
これらのアプローチの結果を比較し,そのメリットとデメリットについて論じる。
さらに,ベルリン市内の一地区での結果を示し,元の不均衡データから92%の分類精度を報告した。
最後に, 長期にわたるデータ収集から, 空間的ガウス密度をデータに適合させるまで, パーキングスペースを手作業で検証し, 注記し, 真理データを改善するためのアプリケーションの利用まで, さらなる作業について考察する。
関連論文リスト
- Learning 3D Perception from Others' Predictions [64.09115694891679]
本研究では,3次元物体検出装置を構築するための新たなシナリオについて検討する。
例えば、自動運転車が新しいエリアに入ると、その領域に最適化された検出器を持つ他の交通参加者から学ぶことができる。
論文 参考訳(メタデータ) (2024-10-03T16:31:28Z) - Vehicle Occurrence-based Parking Space Detection [5.084185653371259]
本研究では、駐車場の画像列を受信し、検出された駐車場を識別する座標のリストを返す自動駐車空間検出方法を提案する。
PKLotとCNRPark-EXTの駐車場データから12の異なる部分集合を用いた結果、AP25のスコアは95.60%、AP50のスコアは79.90%に達した。
論文 参考訳(メタデータ) (2023-06-16T16:22:45Z) - Beyond Prediction: On-street Parking Recommendation using Heterogeneous
Graph-based List-wise Ranking [18.08128929432942]
我々はまず,ドライバーに駐車スペースを直接推薦する,路上駐車推奨(OPR)タスクを提案する。
我々はESGraphと呼ばれる高効率なヘテロジニアスグラフを設計し、歴史的かつリアルタイムなメーターのターンオーバーイベントを表現する。
さらにランキングモデルを用いて、ランキングされた駐車場のリストを推薦するスコア関数を学習する。
論文 参考訳(メタデータ) (2023-04-29T03:59:35Z) - Parking Analytics Framework using Deep Learning [1.4146420810689422]
本稿では,自動車の駐車状況をリアルタイムで把握し,その利用状況を分析する手法を提案する。
このソリューションは、画像解析とディープラーニング技術の組み合わせに基づいている。
論文 参考訳(メタデータ) (2022-03-15T11:16:59Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Universal Embeddings for Spatio-Temporal Tagging of Self-Driving Logs [72.67604044776662]
我々は、生のセンサデータから、自動運転シーンの時間的タグ付けの問題に取り組む。
提案手法では,全てのタグに対する普遍的な埋め込みを学習し,多くの属性を効率的にタグ付けし,限られたデータで新しい属性を高速に学習する。
論文 参考訳(メタデータ) (2020-11-12T02:18:16Z) - FADACS: A Few-shot Adversarial Domain Adaptation Architecture for
Context-Aware Parking Availability Sensing [5.160087162892865]
本研究では,駐車場データの不十分な地域での駐車状況を予測するために,駐車状況検知のためのエンドツーエンドの移動学習フレームワークを設計する。
このフレームワークは2つの課題を克服する。1) 既存のデータ駆動モデルに十分なデータを提供できない実世界のケースが多く、2) センサデータと異種コンテキスト情報をマージすることは困難である。
論文 参考訳(メタデータ) (2020-07-13T08:25:26Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
本稿では,ATA(Estimated Time of Arrival)のための道路ネットワークメトリックラーニングフレームワークを提案する。
本研究は,(1)走行時間を予測する主回帰タスク,(2)リンク埋め込みベクトルの品質向上のための補助的計量学習タスクの2つの構成要素から構成される。
提案手法は最先端モデルよりも優れており,その促進は少ないデータでコールドリンクに集中していることを示す。
論文 参考訳(メタデータ) (2020-06-24T04:45:14Z) - PSDet: Efficient and Universal Parking Slot Detection [14.085693334348827]
リアルタイム駐車スロット検出は、バレット駐車システムにおいて重要な役割を担っている。
既存の手法は、現実世界のアプリケーションでしか成功しない。
不満足なパフォーマンスを考慮に入れている2つの理由を論じる。
romannumeral1: 利用可能なデータセットは多様性が限られており、一般化能力が低い。
論文 参考訳(メタデータ) (2020-05-12T03:06:25Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
我々は、駐車場環境を開発し、人間の駐車操作のデータセットを収集する。
本稿では,多モード長短期記憶(LSTM)予測モデルと畳み込みニューラルネットワークLSTM(CNN-LSTM)を物理ベースの拡張カルマンフィルタ(EKF)ベースラインと比較する。
以上の結果から,1) 意図をよく推定できる(LSTMとCNN-LSTMモデルによる約85% のトップ1精度と100% トップ3精度),2) 運転者の意図する駐車場所の知識が駐車軌跡の予測に大きく影響すること,3) 環境の意味的表現について考察した。
論文 参考訳(メタデータ) (2020-04-21T20:46:32Z) - DADA: Differentiable Automatic Data Augmentation [58.560309490774976]
コストを大幅に削減する微分可能自動データ拡張(DADA)を提案する。
CIFAR-10, CIFAR-100, SVHN, ImageNetのデータセットについて広範な実験を行った。
その結果,DADAは最先端技術よりも1桁以上高速であり,精度は極めて高いことがわかった。
論文 参考訳(メタデータ) (2020-03-08T13:23:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。