論文の概要: ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots
- arxiv url: http://arxiv.org/abs/2004.10293v1
- Date: Tue, 21 Apr 2020 20:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 06:49:02.094891
- Title: ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots
- Title(参考訳): parkpredict:駐車場における車両の動作と意図予測
- Authors: Xu Shen, Ivo Batkovic, Vijay Govindarajan, Paolo Falcone, Trevor
Darrell, and Francesco Borrelli
- Abstract要約: 我々は、駐車場環境を開発し、人間の駐車操作のデータセットを収集する。
本稿では,多モード長短期記憶(LSTM)予測モデルと畳み込みニューラルネットワークLSTM(CNN-LSTM)を物理ベースの拡張カルマンフィルタ(EKF)ベースラインと比較する。
以上の結果から,1) 意図をよく推定できる(LSTMとCNN-LSTMモデルによる約85% のトップ1精度と100% トップ3精度),2) 運転者の意図する駐車場所の知識が駐車軌跡の予測に大きく影響すること,3) 環境の意味的表現について考察した。
- 参考スコア(独自算出の注目度): 65.33650222396078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of predicting driver behavior in parking lots, an
environment which is less structured than typical road networks and features
complex, interactive maneuvers in a compact space. Using the CARLA simulator,
we develop a parking lot environment and collect a dataset of human parking
maneuvers. We then study the impact of model complexity and feature information
by comparing a multi-modal Long Short-Term Memory (LSTM) prediction model and a
Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman
Filter (EKF) baseline. Our results show that 1) intent can be estimated well
(roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and
CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a
major impact on predicting parking trajectory; and 3) the semantic
representation of the environment improves long term predictions.
- Abstract(参考訳): 本研究では,通常の道路網よりも構造が低く,コンパクト空間における複雑なインタラクティブな操作を特徴とする駐車場における運転行動予測の問題点について検討する。
CARLAシミュレーターを用いて、駐車場環境を開発し、人間の駐車操作のデータセットを収集する。
次に、多モード長短期記憶(LSTM)予測モデルと畳み込みニューラルネットワークLSTM(CNN-LSTM)を物理ベース拡張カルマンフィルタ(EKF)ベースラインと比較することにより、モデル複雑性と特徴情報の影響について検討する。
私たちの結果は
1)意図をよく推定できる(LSTMおよびCNN-LSTMモデルでは、ほぼ85%のトップ1精度と100%トップ3精度)。
2)人間運転者の意図した駐車場所に関する知識は,駐車経路の予測に大きな影響を与える。
3) 環境の意味表現は長期予測を改善する。
関連論文リスト
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle
Trajectory and Driving Intention Prediction [0.0]
正確な車両軌道予測は、自動車両と高度な運転支援システムにとって重要である。
運転意図と車両運動には有意な相関関係がある。
本稿では,車両軌道と運転意図を同時に予測する時間的マルチゲート混合実験モデルを提案する。
論文 参考訳(メタデータ) (2023-08-01T13:26:59Z) - Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in
Autonomous Vehicle Safety [3.3659635625913564]
我々は,CARLAシミュレータを用いた短期軌道予測タスクのためのデータセットを開発した。
このデータセットは広く、複雑なシナリオとして、歩行者が道路を横断し、車両が乗り越える、と考えられています。
畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)を用いた終端から終端までの短期軌道予測モデルも開発されている。
論文 参考訳(メタデータ) (2023-07-11T14:28:33Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - SFMGNet: A Physics-based Neural Network To Predict Pedestrian
Trajectories [2.862893981836593]
本稿では,歩行者の軌跡を予測する物理に基づくニューラルネットワークを提案する。
我々は、現実的な予測、予測性能、および「解釈可能性」に関するモデルを定量的に質的に評価する。
最初の結果は、合成データセットでのみ訓練されたモデルであっても、最先端の精度よりも現実的で解釈可能な軌道を予測できることを示唆している。
論文 参考訳(メタデータ) (2022-02-06T14:58:09Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
本論文では,記憶神経ネットワークと呼ばれる新しい繰り返しニューラルネットワークを用いて,時空間的視線軌道予測の問題を解くことを試みる。
提案手法は計算量が少なく,LSTMやGRUを用いた他のディープラーニングモデルと比較すると,単純なアーキテクチャである。
論文 参考訳(メタデータ) (2021-02-24T05:02:19Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - A Multi-Modal States based Vehicle Descriptor and Dilated Convolutional
Social Pooling for Vehicle Trajectory Prediction [3.131740922192114]
本稿では,この問題を解決するために,拡張畳み込み社会プーリング(VD+DCS-LSTM)を用いた車両記述子に基づくLSTMモデルを提案する。
各車両のマルチモーダル状態情報がモデル入力として使用される。
モデル全体の妥当性はNGSIM US-101とI-80データセットで検証された。
論文 参考訳(メタデータ) (2020-03-07T01:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。