A New Algorithm for Hidden Markov Models Learning Problem
- URL: http://arxiv.org/abs/2102.07112v1
- Date: Sun, 14 Feb 2021 09:33:00 GMT
- Title: A New Algorithm for Hidden Markov Models Learning Problem
- Authors: Taha Mansouri, Mohamadreza Sadeghimoghadam, Iman Ghasemian Sahebi
- Abstract summary: This research focuses on the algorithms and approaches for learning Hidden Markov Models (HMMs)
HMMs are a statistical Markov model in which the system being modeled is assumed to be a Markov process.
One of the essential characteristics of HMMs is their learning capabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research focuses on the algorithms and approaches for learning Hidden
Markov Models (HMMs) and compares HMM learning methods and algorithms. HMM is a
statistical Markov model in which the system being modeled is assumed to be a
Markov process. One of the essential characteristics of HMMs is their learning
capabilities. Learning algorithms are introduced to overcome this
inconvenience. One of the main problems of the newly proposed algorithms is
their validation. This research aims by using the theoretical and experimental
analysis to 1) compare HMMs learning algorithms proposed in the literature, 2)
provide a validation tool for new HMM learning algorithms, and 3) present a new
algorithm called Asexual Reproduction Optimization (ARO) with one of its
extensions - Modified ARO (MARO) - as a novel HMM learning algorithm to use the
validation tool proposed. According to the literature findings, it seems that
populationbased algorithms perform better among HMMs learning approaches than
other algorithms. Also, the testing was done in nine benchmark datasets. The
results show that MARO outperforms different algorithms in objective functions
in terms of accuracy and robustness.
Related papers
- An Efficient 1 Iteration Learning Algorithm for Gaussian Mixture Model
And Gaussian Mixture Embedding For Neural Network [2.261786383673667]
The new algorithm brings more robustness and simplicity than classic Expectation Maximization (EM) algorithm.
It also improves the accuracy and only take 1 iteration for learning.
arXiv Detail & Related papers (2023-08-18T10:17:59Z) - Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games [66.2085181793014]
We show that a model-free stage-based Q-learning algorithm can enjoy the same optimality in the $H$ dependence as model-based algorithms.
Our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions.
arXiv Detail & Related papers (2023-08-17T08:34:58Z) - Learning Hidden Markov Models Using Conditional Samples [72.20944611510198]
This paper is concerned with the computational complexity of learning the Hidden Markov Model (HMM)
In this paper, we consider an interactive access model, in which the algorithm can query for samples from the conditional distributions of the HMMs.
Specifically, we obtain efficient algorithms for learning HMMs in settings where we have query access to the exact conditional probabilities.
arXiv Detail & Related papers (2023-02-28T16:53:41Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
We study the problem of deleting user data from machine learning models trained using empirical risk minimization.
We develop an online unlearning algorithm that is both computationally and memory efficient.
arXiv Detail & Related papers (2022-09-25T17:20:33Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Understanding the Behaviors of Optimal Deep Active Learning
Algorithms [19.65665942630067]
Active learning (AL) algorithms may achieve better performance with fewer data because the model guides the data selection process.
There is little study on what the optimal AL looks like, which would help researchers understand where their models fall short.
We present a simulated annealing algorithm to search for this optimal oracle and analyze it for several tasks.
arXiv Detail & Related papers (2020-12-29T22:56:42Z) - A Systematic Characterization of Sampling Algorithms for Open-ended
Language Generation [71.31905141672529]
We study the widely adopted ancestral sampling algorithms for auto-regressive language models.
We identify three key properties that are shared among them: entropy reduction, order preservation, and slope preservation.
We find that the set of sampling algorithms that satisfies these properties performs on par with the existing sampling algorithms.
arXiv Detail & Related papers (2020-09-15T17:28:42Z) - A Hybrid PAC Reinforcement Learning Algorithm [5.279475826661642]
This paper offers a new hybrid probably approximately correct (PAC) reinforcement learning (RL) algorithm for Markov decision processes (MDPs)
The designed algorithm, referred to as the Dyna-Delayed Q-learning (DDQ) algorithm, combines model-free and model-based learning approaches while outperforming both in most cases.
arXiv Detail & Related papers (2020-09-05T21:32:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.