Manifold Density Estimation via Generalized Dequantization
- URL: http://arxiv.org/abs/2102.07143v1
- Date: Sun, 14 Feb 2021 12:40:41 GMT
- Title: Manifold Density Estimation via Generalized Dequantization
- Authors: James A. Brofos, Marcus A. Brubaker, Roy R. Lederman
- Abstract summary: Some kinds of data are not well-modeled by supposing that their underlying geometry is Euclidean.
For instance, some kinds of data may be known to lie on the surface of a sphere.
We propose a method, inspired by the literature on "dequantization," which we interpret through a coordinate transformation of an ambient Euclidean space.
- Score: 9.090451761951101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Density estimation is an important technique for characterizing distributions
given observations. Much existing research on density estimation has focused on
cases wherein the data lies in a Euclidean space. However, some kinds of data
are not well-modeled by supposing that their underlying geometry is Euclidean.
Instead, it can be useful to model such data as lying on a {\it manifold} with
some known structure. For instance, some kinds of data may be known to lie on
the surface of a sphere. We study the problem of estimating densities on
manifolds. We propose a method, inspired by the literature on "dequantization,"
which we interpret through the lens of a coordinate transformation of an
ambient Euclidean space and a smooth manifold of interest. Using methods from
normalizing flows, we apply this method to the dequantization of smooth
manifold structures in order to model densities on the sphere, tori, and the
orthogonal group.
Related papers
- Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds [0.951494089949975]
We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures.
To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions.
Our experiments demonstrate that the proposed approach outperforms the existing approaches.
arXiv Detail & Related papers (2024-06-27T00:44:46Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic
Metrics [5.582101184758529]
This article presents a novel approach to construct Intrinsic Gaussian Processes for regression on unknown manifold with probabilistic metrics in point clouds.
The geometry of manifold is in general different from the usual Euclidean geometry.
The applications of GPUM are illustrated in the simulation studies on the Swiss roll, high dimensional real datasets of WiFi signals and image data examples.
arXiv Detail & Related papers (2023-01-16T17:42:40Z) - Time-inhomogeneous diffusion geometry and topology [69.55228523791897]
Diffusion condensation is a time-inhomogeneous process where each step first computes and then applies a diffusion operator to the data.
We theoretically analyze the convergence and evolution of this process from geometric, spectral, and topological perspectives.
Our work gives theoretical insights into the convergence of diffusion condensation, and shows that it provides a link between topological and geometric data analysis.
arXiv Detail & Related papers (2022-03-28T16:06:17Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Normal-bundle Bootstrap [2.741266294612776]
We present a method that generates new data which preserve the geometric structure of a given data set.
Inspired by algorithms for manifold learning and concepts in differential geometry, our method decomposes the underlying probability measure into a marginalized measure.
We apply our method to the inference of density ridge and related statistics, and data augmentation to reduce overfitting.
arXiv Detail & Related papers (2020-07-27T21:14:19Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Disentangling by Subspace Diffusion [72.1895236605335]
We show that fully unsupervised factorization of a data manifold is possible if the true metric of the manifold is known.
Our work reduces the question of whether unsupervised metric learning is possible, providing a unifying insight into the geometric nature of representation learning.
arXiv Detail & Related papers (2020-06-23T13:33:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.