Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds
- URL: http://arxiv.org/abs/2406.18806v1
- Date: Thu, 27 Jun 2024 00:44:46 GMT
- Title: Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds
- Authors: Masanari Kimura, Howard Bondell,
- Abstract summary: We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures.
To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions.
Our experiments demonstrate that the proposed approach outperforms the existing approaches.
- Score: 0.951494089949975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The density ratio of two probability distributions is one of the fundamental tools in mathematical and computational statistics and machine learning, and it has a variety of known applications. Therefore, density ratio estimation from finite samples is a very important task, but it is known to be unstable when the distributions are distant from each other. One approach to address this problem is density ratio estimation using incremental mixtures of the two distributions. We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures. We show that these methods can be regarded as iterating on the Riemannian manifold along a particular curve between the two probability distributions. Making use of the geometry of the manifold, we propose to consider incremental density ratio estimation along generalized geodesics on this manifold. To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions. We show how to implement an iterative algorithm to sample along these geodesics and show how changing the distances along the geodesic affect the variance and accuracy of the estimation of the density ratio. Our experiments demonstrate that the proposed approach outperforms the existing approaches using incremental mixtures that do not take the geometry of the
Related papers
- Summarizing Bayesian Nonparametric Mixture Posterior -- Sliced Optimal Transport Metrics for Gaussian Mixtures [10.694077392690447]
Existing methods to summarize posterior inference for mixture models focus on identifying a point estimate of the implied random partition for clustering.
We propose a novel approach for summarizing posterior inference in nonparametric Bayesian mixture models, prioritizing density estimation of the mixing measure (or mixture) as an inference target.
arXiv Detail & Related papers (2024-11-22T02:15:38Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
We present a variance-stabilized density estimation problem for maximizing the likelihood of the observed samples.
To obtain a reliable anomaly detector, we introduce a spectral ensemble of autoregressive models for learning the variance-stabilized distribution.
We have conducted an extensive benchmark with 52 datasets, demonstrating that our method leads to state-of-the-art results.
arXiv Detail & Related papers (2023-06-01T11:52:58Z) - Estimating Joint Probability Distribution With Low-Rank Tensor
Decomposition, Radon Transforms and Dictionaries [3.0892724364965005]
We describe a method for estimating the joint probability density from data samples by assuming that the underlying distribution can be decomposed as a mixture of product densities with few mixture components.
We combine two key ideas: dictionaries to represent 1-D densities, and random projections to estimate the joint distribution from 1-D marginals.
Our algorithm benefits from improved sample complexity over the previous dictionary-based approach by using 1-D marginals for reconstruction.
arXiv Detail & Related papers (2023-04-18T05:37:15Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
Binary density ratio estimation (DRE) provides the foundation for many state-of-the-art machine learning algorithms.
We develop a general framework from the perspective of Bregman minimization divergence.
We show that our framework leads to methods that strictly generalize their counterparts in binary DRE.
arXiv Detail & Related papers (2021-12-07T01:23:20Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
We propose DRE-infty, a divide-and-conquer approach to reduce Density ratio estimation (DRE) to a series of easier subproblems.
Inspired by Monte Carlo methods, we smoothly interpolate between the two distributions via an infinite continuum of intermediate bridge distributions.
We show that our approach performs well on downstream tasks such as mutual information estimation and energy-based modeling on complex, high-dimensional datasets.
arXiv Detail & Related papers (2021-11-22T06:26:29Z) - Featurized Density Ratio Estimation [82.40706152910292]
In our work, we propose to leverage an invertible generative model to map the two distributions into a common feature space prior to estimation.
This featurization brings the densities closer together in latent space, sidestepping pathological scenarios where the learned density ratios in input space can be arbitrarily inaccurate.
At the same time, the invertibility of our feature map guarantees that the ratios computed in feature space are equivalent to those in input space.
arXiv Detail & Related papers (2021-07-05T18:30:26Z) - Gaussian Mixture Estimation from Weighted Samples [9.442139459221785]
We consider estimating the parameters of a Gaussian mixture density with a given number of components best representing a given set of weighted samples.
We adopt a density interpretation of the samples by viewing them as a discrete Dirac mixture density over a continuous domain with weighted components.
An expectation-maximization method is proposed that properly considers not only the sample locations, but also the corresponding weights.
arXiv Detail & Related papers (2021-06-09T14:38:46Z) - Generative Learning With Euler Particle Transport [14.557451744544592]
We propose an Euler particle transport (EPT) approach for generative learning.
The proposed approach is motivated by the problem of finding an optimal transport map from a reference distribution to a target distribution.
We show that the proposed density-ratio (difference) estimators do not suffer from the "curse of dimensionality" if data is supported on a lower-dimensional manifold.
arXiv Detail & Related papers (2020-12-11T03:10:53Z) - Posterior Ratio Estimation of Latent Variables [14.619879849533662]
In some applications, we want to compare distributions of random variables that are emphinferred from observations.
We study the problem of estimating the ratio between two posterior probability density functions of a latent variable.
arXiv Detail & Related papers (2020-02-15T16:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.