Asymptotically Optimal Strategies For Combinatorial Semi-Bandits in
Polynomial Time
- URL: http://arxiv.org/abs/2102.07254v1
- Date: Sun, 14 Feb 2021 22:14:28 GMT
- Title: Asymptotically Optimal Strategies For Combinatorial Semi-Bandits in
Polynomial Time
- Authors: Thibaut Cuvelier and Richard Combes and Eric Gourdin
- Abstract summary: We consider semi-bandits with uncorrelated Gaussian rewards.
We propose the first method to compute the solution of the Graves-Lai problem in time for many structures of interest.
- Score: 6.093245378608679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider combinatorial semi-bandits with uncorrelated Gaussian rewards. In
this article, we propose the first method, to the best of our knowledge, that
enables to compute the solution of the Graves-Lai optimization problem in
polynomial time for many combinatorial structures of interest. In turn, this
immediately yields the first known approach to implement asymptotically optimal
algorithms in polynomial time for combinatorial semi-bandits.
Related papers
- Approximation Algorithms for Preference Aggregation Using CP-Nets [3.337244446073836]
This paper studies the design and analysis of approximation algorithms for aggregating preferences over Conditional Preference Networks (CP-nets)
Its focus is on aggregating preferences over so-called emphswaps, for which optimal solutions in general are already known to be of exponential size.
arXiv Detail & Related papers (2023-12-14T17:31:38Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
Un differentiation approximates the solution using an iterative solver and differentiates it through the computational path.
We show that we can either 1) choose a large learning rate leading to a fast convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence.
arXiv Detail & Related papers (2022-09-27T09:27:29Z) - Power of human-algorithm collaboration in solving combinatorial
optimization problems [0.0]
We show that a class of optimization problems can be solved efficiently in expectation up to a multiplicative factor $epsilon$ where $epsilon$ is arbitrary constant.
While our proposed methods are merely theoretical, they cast new light on how to approach solving these problems that have been usually considered intractable.
arXiv Detail & Related papers (2021-07-25T11:21:59Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.