Nearly Minimax Optimal Regret for Learning Infinite-horizon
Average-reward MDPs with Linear Function Approximation
- URL: http://arxiv.org/abs/2102.07301v1
- Date: Mon, 15 Feb 2021 02:08:39 GMT
- Title: Nearly Minimax Optimal Regret for Learning Infinite-horizon
Average-reward MDPs with Linear Function Approximation
- Authors: Yue Wu and Dongruo Zhou and Quanquan Gu
- Abstract summary: We propose a new algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm with linear function approximation.
We show that UCRL2-VTR with Bernstein-type bonus can achieve a regret of $tildeO(dsqrtDT)$, where $d$ is the dimension of the feature mapping.
We also prove a matching lower bound $tildeOmega(dsqrtDT)$, which suggests that the proposed UCRL2-VTR is minimax optimal up to logarithmic factors
- Score: 95.80683238546499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study reinforcement learning in an infinite-horizon average-reward setting
with linear function approximation, where the transition probability function
of the underlying Markov Decision Process (MDP) admits a linear form over a
feature mapping of the current state, action, and next state. We propose a new
algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm
with linear function approximation. We show that UCRL2-VTR with Bernstein-type
bonus can achieve a regret of $\tilde{O}(d\sqrt{DT})$, where $d$ is the
dimension of the feature mapping, $T$ is the horizon, and $\sqrt{D}$ is the
diameter of the MDP. We also prove a matching lower bound
$\tilde{\Omega}(d\sqrt{DT})$, which suggests that the proposed UCRL2-VTR is
minimax optimal up to logarithmic factors. To the best of our knowledge, our
algorithm is the first nearly minimax optimal RL algorithm with function
approximation in the infinite-horizon average-reward setting.
Related papers
- Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation [1.8416014644193066]
We propose an algorithm for learning linear Markov decision processes (MDPs) and linear mixture MDPs under the Bellman optimality condition.
Our algorithm for linear MDPs achieves the best-known regret upper bound of $widetildemathcalO(d3/2mathrmsp(v*)sqrtT)$ over $T$ time steps.
For linear mixture MDPs, our algorithm attains a regret bound of $widetildemathcalO(dcdotmathrm
arXiv Detail & Related papers (2024-09-16T23:13:42Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
We propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $tilde O(dsqrtH3K)$.
Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
arXiv Detail & Related papers (2022-12-12T18:58:59Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
arXiv Detail & Related papers (2021-02-17T18:54:08Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov
Decision Processes [91.38793800392108]
We study reinforcement learning with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model.
We propose a new, computationally efficient algorithm with linear function approximation named $textUCRL-VTR+$ for the aforementioned linear mixture MDPs.
To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.
arXiv Detail & Related papers (2020-12-15T18:56:46Z) - Logarithmic Regret for Reinforcement Learning with Linear Function
Approximation [99.59319332864129]
We show that logarithmic regret is attainable under two recently proposed linear MDP assumptions.
To the best of our knowledge, these are the first logarithmic regret bounds for RL with linear function approximation.
arXiv Detail & Related papers (2020-11-23T17:25:00Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
In this paper, we study reinforcement learning for discounted Decision (MDP)
We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrtT/ (1-gamma)2)$ regret.
Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $ (1-gamma)-0.5$ factor.
arXiv Detail & Related papers (2020-06-23T17:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.