Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation
- URL: http://arxiv.org/abs/2102.08940v1
- Date: Wed, 17 Feb 2021 18:54:08 GMT
- Title: Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation
- Authors: Jiafan He and Dongruo Zhou and Quanquan Gu
- Abstract summary: We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
- Score: 92.3161051419884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the reinforcement learning for finite-horizon episodic Markov
decision processes with adversarial reward and full information feedback, where
the unknown transition probability function is a linear function of a given
feature mapping. We propose an optimistic policy optimization algorithm with
Bernstein bonus and show that it can achieve $\tilde{O}(dH\sqrt{T})$ regret,
where $H$ is the length of the episode, $T$ is the number of interaction with
the MDP and $d$ is the dimension of the feature mapping. Furthermore, we also
prove a matching lower bound of $\tilde{\Omega}(dH\sqrt{T})$ up to logarithmic
factors. To the best of our knowledge, this is the first computationally
efficient, nearly minimax optimal algorithm for adversarial Markov decision
processes with linear function approximation.
Related papers
- Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span [16.49229317664822]
This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear mixture Markov decision processes (MDPs)
Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of $widetildemathcalO(dsqrtmathrmsp(v*)T)$ over $T$ time steps.
arXiv Detail & Related papers (2024-10-19T05:45:50Z) - Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation [1.8416014644193066]
We propose an algorithm for learning linear Markov decision processes (MDPs) and linear mixture MDPs under the Bellman optimality condition.
Our algorithm for linear MDPs achieves the best-known regret upper bound of $widetildemathcalO(d3/2mathrmsp(v*)sqrtT)$ over $T$ time steps.
For linear mixture MDPs, our algorithm attains a regret bound of $widetildemathcalO(dcdotmathrm
arXiv Detail & Related papers (2024-09-16T23:13:42Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
We propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $tilde O(dsqrtH3K)$.
Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
arXiv Detail & Related papers (2022-12-12T18:58:59Z) - Nearly Minimax Optimal Reinforcement Learning with Linear Function
Approximation [25.60689712525918]
We study reinforcement learning with linear function approximation where the transition probability and reward functions are linear.
We propose a novel-efficient algorithm, LSVI-UCB$+$, which achieves an $widetildeO(HdsqrtT)$ regret bound where $H$ is the episode length, $d$ is the feature dimension, and $T$ is the number of steps.
arXiv Detail & Related papers (2022-06-23T06:04:21Z) - Nearly Minimax Optimal Regret for Learning Infinite-horizon
Average-reward MDPs with Linear Function Approximation [95.80683238546499]
We propose a new algorithm UCRL2-VTR, which can be seen as an extension of the UCRL2 algorithm with linear function approximation.
We show that UCRL2-VTR with Bernstein-type bonus can achieve a regret of $tildeO(dsqrtDT)$, where $d$ is the dimension of the feature mapping.
We also prove a matching lower bound $tildeOmega(dsqrtDT)$, which suggests that the proposed UCRL2-VTR is minimax optimal up to logarithmic factors
arXiv Detail & Related papers (2021-02-15T02:08:39Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
In this paper, we study reinforcement learning for discounted Decision (MDP)
We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrtT/ (1-gamma)2)$ regret.
Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $ (1-gamma)-0.5$ factor.
arXiv Detail & Related papers (2020-06-23T17:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.