論文の概要: Machine Learning Model Development from a Software Engineering
Perspective: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2102.07574v1
- Date: Mon, 15 Feb 2021 14:25:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 15:59:57.520775
- Title: Machine Learning Model Development from a Software Engineering
Perspective: A Systematic Literature Review
- Title(参考訳): ソフトウェアエンジニアリングの視点から見た機械学習モデルの開発:システム文学のレビュー
- Authors: Giuliano Lorenzoni and Paulo Alencar and Nathalia Nascimento and
Donald Cowan
- Abstract要約: データサイエンティストは、しばしば、業界やアカデミーの様々な問題を解決するために機械学習モデルを開発した。
本稿では,ソフトウェア工学の観点からMLモデルの開発において生じる課題と実践について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data scientists often develop machine learning models to solve a variety of
problems in the industry and academy but not without facing several challenges
in terms of Model Development. The problems regarding Machine Learning
Development involves the fact that such professionals do not realize that they
usually perform ad-hoc practices that could be improved by the adoption of
activities presented in the Software Engineering Development Lifecycle. Of
course, since machine learning systems are different from traditional Software
systems, some differences in their respective development processes are to be
expected. In this context, this paper is an effort to investigate the
challenges and practices that emerge during the development of ML models from
the software engineering perspective by focusing on understanding how software
developers could benefit from applying or adapting the traditional software
engineering process to the Machine Learning workflow.
- Abstract(参考訳): データサイエンティストは、しばしば機械学習モデルを開発し、業界やアカデミーのさまざまな問題を解決するが、モデル開発に関していくつかの課題に直面していない。
機械学習開発に関する問題は、そのような専門家が、ソフトウェア開発ライフサイクルで提示された活動の採用によって改善できるアドホックなプラクティスを通常実行していることに気付かないという事実を含む。
もちろん、機械学習システムは従来のソフトウェアシステムとは異なるので、それぞれの開発プロセスにいくつかの違いが期待される。
本稿では,従来のソフトウェア工学プロセスを機械学習ワークフローに適用・適用することで,ソフトウェア開発者がどのようなメリットを享受できるかを理解することにより,ソフトウェア工学の観点からmlモデル開発中に生じる課題とプラクティスについて検討する。
関連論文リスト
- Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Machine Learning Application Development: Practitioners' Insights [18.114724750441724]
MLアプリケーション開発の課題とベストプラクティスを理解することを目的とした調査について報告する。
80人の実践者から得られた結果を17の発見にまとめ、MLアプリケーション開発の課題とベストプラクティスを概説する。
報告された課題が、MLベースのアプリケーションのエンジニアリングプロセスと品質を改善するために調査すべきトピックについて、研究コミュニティに知らせてくれることを期待しています。
論文 参考訳(メタデータ) (2021-12-31T03:38:37Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Software engineering for artificial intelligence and machine learning
software: A systematic literature review [6.681725960709127]
本研究は,AI/MLシステムの開発において,ソフトウェア工学がどのように応用されてきたかを検討することを目的とする。
プロフェッショナルが直面する主な課題は、テスト、AIソフトウェアの品質、データ管理といった分野だ。
論文 参考訳(メタデータ) (2020-11-07T11:06:28Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。