論文の概要: Panoramic Learning with A Standardized Machine Learning Formalism
- arxiv url: http://arxiv.org/abs/2108.07783v1
- Date: Tue, 17 Aug 2021 17:44:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 14:42:29.638867
- Title: Panoramic Learning with A Standardized Machine Learning Formalism
- Title(参考訳): 標準化された機械学習形式によるパノラマ学習
- Authors: Zhiting Hu, Eric P. Xing
- Abstract要約: 本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
- 参考スコア(独自算出の注目度): 116.34627789412102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) is about computational methods that enable machines to
learn concepts from experiences. In handling a wide variety of experiences
ranging from data instances, knowledge, constraints, to rewards, adversaries,
and lifelong interplay in an ever-growing spectrum of tasks, contemporary ML/AI
research has resulted in a multitude of learning paradigms and methodologies.
Despite the continual progresses on all different fronts, the disparate
narrowly-focused methods also make standardized, composable, and reusable
development of learning solutions difficult, and make it costly if possible to
build AI agents that panoramically learn from all types of experiences. This
paper presents a standardized ML formalism, in particular a standard equation
of the learning objective, that offers a unifying understanding of diverse ML
algorithms, making them special cases due to different choices of modeling
components. The framework also provides guidance for mechanic design of new ML
solutions, and serves as a promising vehicle towards panoramic learning with
all experiences.
- Abstract(参考訳): 機械学習(ml)は、機械が経験から概念を学ぶことを可能にする計算手法である。
データインスタンス、知識、制約、報酬、敵、生涯にわたる対人関係など、幅広い分野の経験を扱う中で、現代のML/AI研究は様々な学習パラダイムと方法論を生み出している。
あらゆる異なる分野における継続的な進歩にもかかわらず、異なる狭義のアプローチは、標準化され、構成可能で、再利用可能な学習ソリューションの開発を困難にし、あらゆるタイプの経験からパノラマ的に学習するaiエージェントを構築することは可能であればコストがかかる。
本稿では,MLアルゴリズムを統一的に理解する学習目的の標準的な方程式を標準化したML形式について述べる。
このフレームワークは、新しいMLソリューションのメカニック設計のガイダンスも提供しており、あらゆる経験を持つパノラマ学習に向けた有望な手段となっている。
関連論文リスト
- ICE-T: A Multi-Faceted Concept for Teaching Machine Learning [2.9685635948300004]
我々は、コンピュータサイエンスの教育に使用される実践的原則を考察し、基準を定義し、既存の著名なプラットフォーム、ツール、ゲームの選択を評価します。
我々は、主にブラックボックスとして機械学習を描写するアプローチを批判し、結果としてデータ、アルゴリズム、モデルを理解することに重点を置いていない。
本稿では、既知の教義の延長として、モーダル間移動、計算、説明的思考、ICE-Tについて述べる。
論文 参考訳(メタデータ) (2024-11-08T09:16:05Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
近年、AI研究者や実践家は、信頼性と信頼性のある意思決定を行うシステムを構築するための原則とガイドラインを導入している。
実際には、システムが運用され、実際の環境で継続的に進化し、運用するためにデプロイされる必要がある場合に、根本的な課題が発生する。
この課題に対処するため、MLOps(Machine Learning Operations)は、デプロイメントにおけるMLソリューションを標準化するための潜在的なレシピとして登場した。
論文 参考訳(メタデータ) (2024-10-28T09:34:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - MachineLearnAthon: An Action-Oriented Machine Learning Didactic Concept [34.6229719907685]
本稿では、異なる分野の学生に包括的にデザインされた革新的教科概念であるMachineLearnAthonフォーマットを紹介する。
この概念の核心はMLの課題であり、現実の問題を解決するために産業用データセットを利用している。
これらはMLパイプライン全体をカバーするもので、データ準備からデプロイメント、評価に至るまで、データのリテラシーと実践的なスキルを促進する。
論文 参考訳(メタデータ) (2024-01-29T16:50:32Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - MLCopilot: Unleashing the Power of Large Language Models in Solving
Machine Learning Tasks [31.733088105662876]
我々は、新しいフレームワークを導入することで、機械学習と人間の知識のギャップを埋めることを目指している。
本稿では、構造化された入力を理解するためのLLMの能力を拡張し、新しいMLタスクを解くための徹底的な推論を行う可能性を示す。
論文 参考訳(メタデータ) (2023-04-28T17:03:57Z) - Learning by Design: Structuring and Documenting the Human Choices in
Machine Learning Development [6.903929927172917]
本稿では,機械学習モデル作成における熟考と規範的選択を概説する8つの設計質問からなる手法を提案する。
本手法は,方法論的透明性を通じた批判的評価を支援するなど,いくつかの利点がある。
本手法は,MLモデルの開発において,ML実践者が選択や仮定を構造化し,正当化する上で有効であると考えている。
論文 参考訳(メタデータ) (2021-05-03T08:47:45Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。