Experimental Tests of Invariant Set Theory
- URL: http://arxiv.org/abs/2102.07795v2
- Date: Fri, 29 Nov 2024 14:15:00 GMT
- Title: Experimental Tests of Invariant Set Theory
- Authors: Jonte R. Hance, Tim N. Palmer, John Rarity,
- Abstract summary: We identify points of difference between Invariant Set Theory and standard quantum theory.
We show that these differences lead to noticeable differences in predictions between the two theories.
We design a number of experiments to test which of these predictions corresponds to our world.
- Score: 0.0
- License:
- Abstract: We identify points of difference between Invariant Set Theory and standard quantum theory, and show that these lead to noticeable differences in predictions between the two theories. We design a number of experiments to test which of these predictions corresponds to our world. If these experiments were undertaken, they would allow us to investigate whether standard quantum theory or invariant set theory best describes reality. These tests can also be deployed on theories sharing similar properties (e.g. Penrose's gravitational collapse theory).
Related papers
- Machine Learning of the Prime Distribution [49.84018914962972]
We provide a theoretical argument explaining the experimental observations of Yang-Hui He about the learnability of primes.
We also posit that the ErdHos-Kac law would very unlikely be discovered by current machine learning techniques.
arXiv Detail & Related papers (2024-03-19T09:47:54Z) - Derivation of Standard Quantum Theory via State Discrimination [53.64687146666141]
General Probabilistic Theories (GPTs) is a new information theoretical approach to single out standard quantum theory.
We focus on the bound of the performance for an information task called state discrimination in general models.
We characterize standard quantum theory out of general models in GPTs by the bound of the performance for state discrimination.
arXiv Detail & Related papers (2023-07-21T00:02:11Z) - Experience in quantum physics: toward a theory of everything [0.0]
I argue for a minimal prescription in extracting empirical predictions from path integrals.
Relative probability for one experience is obtained by summing over all configurations compatible with that experience.
An application to Wigner's friend settings shows that quantum theory admits objective predictions for subjective experiences.
arXiv Detail & Related papers (2023-06-20T14:05:50Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Testing quantum theory by generalizing noncontextuality [0.0]
We prove that only Jordan-algebraic state spaces are exactly embeddable into quantum theory.
We propose an experimental test of quantum theory by probing single physical systems.
arXiv Detail & Related papers (2021-12-17T19:00:24Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Towards correlation self-testing of quantum theory in the adaptive
Clauser-Horne-Shimony-Holt game [1.0878040851638]
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task.
This is the first step towards a general solution that could rule out all theories in which the set of realisable correlations does not coincide with the quantum set.
arXiv Detail & Related papers (2020-09-10T18:04:13Z) - Perfect Discrimination in Approximate Quantum Theory of General
Probabilistic Theories [51.7367238070864]
We define larger measurement classes that are smoothly connected with the class of POVMs via a parameter.
We give a sufficient condition of perfect discrimination, which shows a significant improvement beyond the class of POVMs.
arXiv Detail & Related papers (2020-04-10T08:45:20Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.