論文の概要: Improving the Accuracy Of MEPDG Climate Modeling Using Radial Basis
Function
- arxiv url: http://arxiv.org/abs/2102.07890v1
- Date: Mon, 15 Feb 2021 23:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 14:48:05.499066
- Title: Improving the Accuracy Of MEPDG Climate Modeling Using Radial Basis
Function
- Title(参考訳): 放射状基底関数を用いたmepdg気候モデリングの精度向上
- Authors: Amirehsan Ghasemi, Kelvin J Msechu, Arash Ghasemi, Mbakisya A.
Onyango, Ignatius Fomunung, Joseph Owino
- Abstract要約: GravityモデルとRadar Basisの2つのメッシュフリー近似手法の精度を比較した。
ケーススタディでは,米国テンネシーの異なる場所における温度関数を比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the accuracy of two mesh-free approximation approaches, the
Gravity model and Radial Basis Function, are compared. The two schemes'
convergence behaviors prove that RBF is faster and more accurate than the
Gravity model. As a case study, the interpolation of temperature at different
locations in Tennesse, USA, are compared. Delaunay mesh generation is used to
create random points inside and on the border, which data can be incorporated
in these locations. 49 MERRA weather stations as used as data sources to
provide the temperature at a specific day and hour. The contours of
interpolated temperatures provided in the result section assert RBF is a more
accurate method than the Gravity model by showing a smoother and broader range
of interpolated data.
- Abstract(参考訳): 本稿では,2つのメッシュフリー近似手法である重力モデルと放射基底関数の精度を比較した。
2つのスキームの収束挙動は、RBFが重力モデルよりも高速で精度が高いことを証明している。
ケーススタディでは,米国テネセ州の異なる場所における温度の補間を比較した。
Delaunayメッシュ生成は、これらの場所にデータを組み込むことができる境界の内側と上にランダムなポイントを作成するために使用されます。
49 MERRA気象ステーションは、特定の日と時間の温度を提供するためにデータソースとして使用されます。
結果セクションで提供される補間温度の輪郭は、RBFは、補間データのより滑らかで広い範囲を示すことによって、重力モデルよりも正確な方法です。
関連論文リスト
- Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
そこで本研究では,現実的に複雑な1kmスケールの気象条件下でのスコアベースデータ同化の実現可能性を示す。
40の気象観測所からの観測を取り入れることで、左の観測所で10%低いRMSEが達成される。
ますます野心的な地域国家ジェネレータと、In situ、地上ベース、衛星リモートセンシングデータストリームの集合を組み合わす拡張を探求する時期だ。
論文 参考訳(メタデータ) (2024-06-19T10:28:11Z) - Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models [0.0]
本研究では,気象データの超解像に対するディープラーニング拡散モデルの適用について検討した。
本稿では,低分解能気象データを高分解能出力に変換する手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T14:15:12Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
我々は、NASAのソーラー・ダイナミクス・オブザーバ(SDO)極紫外線(EUV)スペクトル画像をニューラル熱圏密度モデルに組み込む。
我々は、EUV画像により、時間分解能をはるかに高め、地上ベースのプロキシを置き換えることができることを示した。
論文 参考訳(メタデータ) (2023-11-12T23:39:21Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - A Deep Convolutional Neural Network Model for improving WRF Forecasts [0.19573380763700707]
我々は4年間の歴史を持つCNNモデル(2014-2017)をトレーニングし、WRFバイアスのパターンについて検討する。
次に, 風速, 方向, 降水量, 相対湿度, 表面圧力, 露点温度, 表面温度の予測値において, これらのバイアスを低減させる。
その結果,全駅でWRF予測が顕著に改善したことが示唆された。
論文 参考訳(メタデータ) (2020-08-14T17:48:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。