TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
- URL: http://arxiv.org/abs/2102.08005v1
- Date: Tue, 16 Feb 2021 08:09:45 GMT
- Title: TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
- Authors: Yundong Zhang, Huiye Liu, and Qiang Hu
- Abstract summary: We study the problem of improving efficiency in modeling global contexts without losing localization ability for low-level details.
TransFuse, a novel two-branch architecture is proposed, which combines Transformers and CNNs in a parallel style.
With TransFuse, both global dependency and low-level spatial details can be efficiently captured in a much shallower manner.
- Score: 9.266588373318688
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: U-Net based convolutional neural networks with deep feature representation
and skip-connections have significantly boosted the performance of medical
image segmentation. In this paper, we study the more challenging problem of
improving efficiency in modeling global contexts without losing localization
ability for low-level details. TransFuse, a novel two-branch architecture is
proposed, which combines Transformers and CNNs in a parallel style. With
TransFuse, both global dependency and low-level spatial details can be
efficiently captured in a much shallower manner. Besides, a novel fusion
technique - BiFusion module is proposed to fuse the multi-level features from
each branch. TransFuse achieves the newest state-of-the-arts on polyp
segmentation task, with 20\% fewer parameters and the fastest inference speed
at about 98.7 FPS.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation [5.280523424712006]
U-Net is currently the most widely used architecture for medical image segmentation.
We have improved the KAN to reduce memory usage and computational load.
This approach enhances the model's capability to capture nonlinear relationships.
arXiv Detail & Related papers (2024-09-23T02:52:49Z) - CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion [0.0]
We present a novel lightweight hybrid network that pairs Convolution with Transformers.
We fuse the local responses acquired from the convolution path with the global responses acquired from the MFCA module.
Experiments demonstrate that our variants achieve state-of-the-art performance, whether trained from scratch on large data or even with low-data regime.
arXiv Detail & Related papers (2024-07-09T08:47:13Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
We propose RTFormer, an efficient dual-resolution transformer for real-time semantic segmenation.
It achieves better trade-off between performance and efficiency than CNN-based models.
Experiments on mainstream benchmarks demonstrate the effectiveness of our proposed RTFormer.
arXiv Detail & Related papers (2022-10-13T16:03:53Z) - HiFormer: Hierarchical Multi-scale Representations Using Transformers
for Medical Image Segmentation [3.478921293603811]
HiFormer is a novel method that efficiently bridges a CNN and a transformer for medical image segmentation.
To secure a fine fusion of global and local features, we propose a Double-Level Fusion (DLF) module in the skip connection of the encoder-decoder structure.
arXiv Detail & Related papers (2022-07-18T11:30:06Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.