論文の概要: EPE-NAS: Efficient Performance Estimation Without Training for Neural
Architecture Search
- arxiv url: http://arxiv.org/abs/2102.08099v1
- Date: Tue, 16 Feb 2021 11:47:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 15:14:47.527133
- Title: EPE-NAS: Efficient Performance Estimation Without Training for Neural
Architecture Search
- Title(参考訳): EPE-NAS: ニューラルネットワークアーキテクチャ検索のトレーニングなしで効率的なパフォーマンス推定
- Authors: Vasco Lopes, Saeid Alirezazadeh, Lu\'is A. Alexandre
- Abstract要約: ネットワーク評価の問題を緩和する効率的な性能評価戦略であるEPE-NASを提案する。
EPE-NASは堅牢な相関を生成することができ、単純なランダムサンプリング戦略に組み込むことで、単一のGPUを使用して数秒でトレーニングを必要とせず、競争力のあるネットワークを検索できることを示しています。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Architecture Search (NAS) has shown excellent results in designing
architectures for computer vision problems. NAS alleviates the need for
human-defined settings by automating architecture design and engineering.
However, NAS methods tend to be slow, as they require large amounts of GPU
computation. This bottleneck is mainly due to the performance estimation
strategy, which requires the evaluation of the generated architectures, mainly
by training them, to update the sampler method. In this paper, we propose
EPE-NAS, an efficient performance estimation strategy, that mitigates the
problem of evaluating networks, by scoring untrained networks and creating a
correlation with their trained performance. We perform this process by looking
at intra and inter-class correlations of an untrained network. We show that
EPE-NAS can produce a robust correlation and that by incorporating it into a
simple random sampling strategy, we are able to search for competitive
networks, without requiring any training, in a matter of seconds using a single
GPU. Moreover, EPE-NAS is agnostic to the search method, since it focuses on
the evaluation of untrained networks, making it easy to integrate into almost
any NAS method.
- Abstract(参考訳): neural architecture search (nas) はコンピュータビジョン問題のアーキテクチャ設計において優れた結果を示している。
NASは、アーキテクチャ設計とエンジニアリングを自動化することで、ヒューマン定義設定の必要性を軽減する。
しかし、多くのGPU計算を必要とするため、NASメソッドは遅い傾向があります。
このボトルネックは主に、サンプルメソッドを更新するために、主にトレーニングすることで生成されたアーキテクチャの評価を必要とするパフォーマンス推定戦略に起因している。
本論文では,ネットワーク評価の問題を緩和する効率的な性能推定戦略であるEPE-NASを提案する。
トレーニングされていないネットワークのクラス内およびクラス間相関を調べた。
EPE-NASは堅牢な相関を生成することができ、単純なランダムサンプリング戦略に組み込むことで、単一のGPUを使用して数秒でトレーニングを必要とせず、競争力のあるネットワークを検索できることを示しています。
さらに、EPE-NASは、訓練されていないネットワークの評価に焦点を当てているため、ほぼすべてのNASメソッドに簡単に統合できます。
関連論文リスト
- Delta-NAS: Difference of Architecture Encoding for Predictor-based Evolutionary Neural Architecture Search [5.1331676121360985]
我々は,NASの微粒化を低コストで行うアルゴリズムを構築した。
類似ネットワークの精度の差を予測することにより,問題を低次元空間に投影することを提案する。
論文 参考訳(メタデータ) (2024-11-21T02:43:32Z) - SiGeo: Sub-One-Shot NAS via Information Theory and Geometry of Loss
Landscape [14.550053893504764]
ゼロショットとワンショットNASの間のブリッジとして機能する"サブワンショット"パラダイムを導入する。
サブワンショットNASでは、スーパーネットはトレーニングデータの小さなサブセットのみを使用してトレーニングされる。
提案するプロキシは,スーパーネットウォームアップとプロキシの有効性を結びつける,新しい理論フレームワーク上に構築されたプロキシである。
論文 参考訳(メタデータ) (2023-11-22T05:25:24Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
ニューラルネットワーク探索(NAS)の一般化特性を統一的枠組みの下で検討する。
我々は, 有限幅政権下でのニューラル・タンジェント・カーネル(NTK)の最小固有値の下(および上)境界を導出する。
トレーニングなしでもNASがトップパフォーマンスアーキテクチャを選択する方法を示す。
論文 参考訳(メタデータ) (2022-09-15T12:11:41Z) - PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search [34.06028035262884]
我々は、新しい進化型NAS戦略、Predictor-assisted E-NAS(PRE-NAS)を提案する。
Pre-NASは新しい進化的探索戦略を活用し、世代ごとに高忠実度重みの継承を統合する。
NAS-Bench-201とDARTSの探索実験により、Pre-NASは最先端のNAS法より優れていることが示された。
論文 参考訳(メタデータ) (2022-04-27T06:40:39Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - Across-Task Neural Architecture Search via Meta Learning [1.225795556154044]
Adequate labeled data and expensive compute resources is the prequisites for the success of Neural Architecture search (NAS)
限られた計算リソースとデータを持つメタ学習シナリオにNASを適用するのは難しい。
本稿では、勾配に基づくメタラーニングとEAに基づくNASを組み合わせることで、タスク間ニューラルネットワーク探索(AT-NAS)を提案する。
論文 参考訳(メタデータ) (2021-10-12T09:07:33Z) - Understanding and Accelerating Neural Architecture Search with
Training-Free and Theory-Grounded Metrics [117.4281417428145]
この作業は、ニューラルネットワークサーチ(NAS)のための原則的で統一的なトレーニングフリーフレームワークの設計を目標としている。
NASは、高性能ニューラルネットワークの発見を自動化するために爆発的に研究されてきたが、資源消費に悩まされ、しばしば訓練や近似によって探索バイアスを引き起こす。
我々は,検索ネットワークの「TEG」特性を解消し,NASを理解し,加速するための統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-26T17:52:07Z) - Direct Federated Neural Architecture Search [0.0]
本稿では,ハードウェアに依存せず,計算的に軽量な直接フェデレーションNASと,準備の整ったニューラルネットワークモデルを探すためのワンステージ手法を提案する。
以上の結果から, 従来技術の精度向上を図りながら, 資源消費の大幅な削減を図った。
論文 参考訳(メタデータ) (2020-10-13T08:11:35Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
バイナリ化されたニューラルネットワークサーチ(BNAS)は、エッジコンピューティング用の組み込みデバイスにおいて、膨大な計算コストを削減するために、極めて圧縮されたモデルを生成する。
9,6.53%対9,7.22%の精度はCIFAR-10データセットで達成されるが、かなり圧縮されたモデルで、最先端のPC-DARTSよりも40%速い検索が可能である。
論文 参考訳(メタデータ) (2020-09-08T15:51:23Z) - DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search [76.9225014200746]
ニューラルネットワーク探索(NAS)における効率的な探索は中核的な問題である
本稿では,大規模ターゲットタスクのアーキテクチャを直接検索できるDA-NASを提案する。
従来の手法より2倍速く、精度は現在最先端であり、小さなFLOPの制約下で76.2%である。
論文 参考訳(メタデータ) (2020-03-27T17:55:21Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
DDPNASと呼ばれる効率よく統一されたNASフレームワークを提案する。
検索空間は動的に切断され,その分布はいくつかのエポック毎に更新される。
提案した効率的なネットワーク生成手法により,与えられた制約に対する最適なニューラルネットワークアーキテクチャを直接取得する。
論文 参考訳(メタデータ) (2019-05-28T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。