論文の概要: Stochastic Variance Reduction for Variational Inequality Methods
- arxiv url: http://arxiv.org/abs/2102.08352v1
- Date: Tue, 16 Feb 2021 18:39:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 15:10:49.298671
- Title: Stochastic Variance Reduction for Variational Inequality Methods
- Title(参考訳): 変動不等式法における確率的ばらつき低減
- Authors: Ahmet Alacaoglu, Yura Malitsky
- Abstract要約: 凸凹サドル点問題, 単調変位不等式, 単調包含問題に対する分散化アルゴリズムを提案する。
私たちのフレームワークは、ユークリッドとブレグマンの両方で、エクストラグラデーション、フォワードバックワード、フォワードリフレクテッドバックワードメソッドに適用されます。
- 参考スコア(独自算出の注目度): 19.061953585686986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose stochastic variance reduced algorithms for solving convex-concave
saddle point problems, monotone variational inequalities, and monotone
inclusions. Our framework applies to extragradient, forward-backward-forward,
and forward-reflected-backward methods both in Euclidean and Bregman setups.
All proposed methods converge in exactly the same setting as their
deterministic counterparts and they either match or improve the best-known
complexities for solving structured min-max problems. Our results reinforce the
correspondence between variance reduction in variational inequalities and
minimization. We also illustrate the improvements of our approach with
numerical evaluations on matrix games.
- Abstract(参考訳): 凸凹サドル点問題, 単調変位不等式, 単調包含を解くための確率的分散低減アルゴリズムを提案する。
私たちのフレームワークは、ユークリッドとブレグマンのセットアップの両方で、エクストラグラデーション、フォワードバックワード、フォワードリフレクテッドバックワードメソッドに適用されます。
提案手法はすべて決定論的手法と全く同じ設定に収束し、構造的min-max問題を解くための最もよく知られた複雑さと一致するか改善する。
その結果,変分不等式分散低減と最小化の対応が強化された。
また,行列ゲーム上での数値評価によるアプローチの改善についても述べる。
関連論文リスト
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - An Inexact Halpern Iteration with Application to Distributionally Robust
Optimization [9.529117276663431]
決定論的および決定論的収束設定におけるスキームの不正確な変種について検討する。
不正確なスキームを適切に選択することにより、(予想される)剰余ノルムの点において$O(k-1)収束率を許容することを示す。
論文 参考訳(メタデータ) (2024-02-08T20:12:47Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
本稿では,一階変分法の理論解析のための統一的アプローチを提案する。
提案手法は非線形勾配問題とモンテカルロの強い問題の両方をカバーする。
凸法最適化問題の場合、オラクルに強く一致するような境界を与える。
論文 参考訳(メタデータ) (2023-05-25T11:11:31Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
有限サムコヒーレンシブ変分不等式の問題を考える。
強い単調な問題に対しては、この方法を用いて解への線形収束を達成することができる。
論文 参考訳(メタデータ) (2022-10-12T08:04:48Z) - Smooth Monotone Stochastic Variational Inequalities and Saddle Point
Problems: A Survey [119.11852898082967]
本稿では,スムーズなモノトン変量不等式を解くための手法について検討する。
まず最初に、メソッドが最終的に進化する基盤を与えます。
次に、一般定式化の方法を概観し、有限和設定を考察する。
論文 参考訳(メタデータ) (2022-08-29T13:39:30Z) - A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction [2.048226951354646]
弱凸, 複合最適化問題に対する実装可能な近位点(SPP)法を開発した。
提案アルゴリズムは分散低減機構を組み込んでおり、その結果の更新は不正確なセミスムース・ニュートン・フレームワークを用いて解決される。
論文 参考訳(メタデータ) (2022-04-01T13:08:49Z) - A unified algorithm framework for mean-variance optimization in
discounted Markov decision processes [7.510742715895749]
本稿では,無限水平割引マルコフ決定過程(MDP)におけるリスク-逆平均分散最適化について検討する。
本稿では,処理不能なMPPを標準形式で再定義された報酬関数を持つ標準形式に変換するための擬似平均を導入する。
平均分散最適化のための2レベル最適化構造を持つ統合アルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-15T02:19:56Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
広く使われている1次サドル点最適化法は、帰納的導出時に同一の連続時間常微分方程式(ODE)を導出する。
しかし、これらの方法の収束特性は、単純な双線型ゲームでさえ質的に異なる。
いくつかのサドル点最適化法のための微分方程式モデルの設計に流体力学の研究フレームワークを採用する。
論文 参考訳(メタデータ) (2021-12-27T18:31:34Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Variance-Reduced Splitting Schemes for Monotone Stochastic Generalized
Equations [0.0]
演算子を期待値とする単調な包摂問題を考える。
分割スキームの直接適用は、各ステップにおける期待値マップによる問題解決の必要性により複雑である。
本稿では,不確実性に対処する手法を提案する。
論文 参考訳(メタデータ) (2020-08-26T02:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。