論文の概要: A Unified Theory of Stochastic Proximal Point Methods without Smoothness
- arxiv url: http://arxiv.org/abs/2405.15941v1
- Date: Fri, 24 May 2024 21:09:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 01:58:51.342031
- Title: A Unified Theory of Stochastic Proximal Point Methods without Smoothness
- Title(参考訳): 滑らか性のない確率的近点法の統一理論
- Authors: Peter Richtárik, Abdurakhmon Sadiev, Yury Demidovich,
- Abstract要約: 近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
- 参考スコア(独自算出の注目度): 52.30944052987393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive analysis of a broad range of variations of the stochastic proximal point method (SPPM). Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning, a trait not shared by the dominant stochastic gradient descent (SGD) algorithm. A framework of assumptions that we introduce encompasses methods employing techniques such as variance reduction and arbitrary sampling. A cornerstone of our general theoretical approach is a parametric assumption on the iterates, correction and control vectors. We establish a single theorem that ensures linear convergence under this assumption and the $\mu$-strong convexity of the loss function, and without the need to invoke smoothness. This integral theorem reinstates best known complexity and convergence guarantees for several existing methods which demonstrates the robustness of our approach. We expand our study by developing three new variants of SPPM, and through numerical experiments we elucidate various properties inherent to them.
- Abstract(参考訳): 本稿では,確率的近位点法(SPPM)の幅広いバリエーションを包括的に分析する。
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めており、これは支配的確率勾配勾配(SGD)アルゴリズムでは共有されない特徴である。
本稿では,分散還元法や任意のサンプリング法などの手法を取り入れた仮定の枠組みについて述べる。
我々の一般的な理論的アプローチの土台は、反復、補正、制御ベクトルに関するパラメトリックな仮定である。
この仮定の下で線型収束と損失関数の$\mu$-strong凸性を保証する単一の定理を確立する。
この積分定理は、我々のアプローチの堅牢性を示すいくつかの既存の方法に対して、最もよく知られた複雑性と収束を保証することを再主張する。
我々はSPPMの3つの新しい変種を開発することで研究を拡張し、数値実験を通じてそれらの性質を解明する。
関連論文リスト
- Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method [5.025654873456757]
本論文は,提案手法の収束性に関する高い確率保証を得るために,低サンプリング複雑性を確立する。
近位サブプロブレムを解くためにサブルーチンが開発され、分散還元のための新しい技術としても機能する。
論文 参考訳(メタデータ) (2024-02-14T07:34:22Z) - FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse
optimisation on Measures [1.9950682531209156]
本稿では,コニックパーティクルグラディエントDescent(CPGD)のスケーラビリティを高めるために,ランダム特徴と協調してグラディエントDescent戦略を利用する新しいアルゴリズムを提案する。
i) 降下軌道に沿った解の総変動規範は、安定を保ち、望ましくないばらつきを防止し、 (ii) 収率$mathcalO(log(K)/sqrtK)$$$K以上の大域収束保証を確立し、アルゴリズムの効率と有効性を示す; (iii) さらに、分析と確立を行う。
論文 参考訳(メタデータ) (2023-12-10T20:41:43Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - A Unified Convergence Theorem for Stochastic Optimization Methods [4.94128206910124]
一連の統一最適化手法に対する収束結果の導出に使用される基本的な統一収束定理を提供する。
直接応用として、一般的な設定下での収束結果をほぼ確実に回復する。
論文 参考訳(メタデータ) (2022-06-08T14:01:42Z) - A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction [2.048226951354646]
弱凸, 複合最適化問題に対する実装可能な近位点(SPP)法を開発した。
提案アルゴリズムは分散低減機構を組み込んでおり、その結果の更新は不正確なセミスムース・ニュートン・フレームワークを用いて解決される。
論文 参考訳(メタデータ) (2022-04-01T13:08:49Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
我々は,データ生成過程の条件として,ロジカルオプティマによって引き起こされるリスクに対して,非漸近上界を導出する。
特に,データ生成過程の仮定なしにアルゴリズムの局所的変動を確立する。
我々は,大域収束が得られる半直交設計を含む特別な場合について検討する。
論文 参考訳(メタデータ) (2020-10-25T05:15:13Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。