Finding the Gap: Neuromorphic Motion Vision in Cluttered Environments
- URL: http://arxiv.org/abs/2102.08417v1
- Date: Tue, 16 Feb 2021 19:19:23 GMT
- Title: Finding the Gap: Neuromorphic Motion Vision in Cluttered Environments
- Authors: Thorben Schoepe, Ella Janotte, Moritz B. Milde, Olivier J.N. Bertrand,
Martin Egelhaaf and Elisabetta Chicca
- Abstract summary: In the fly brain, motion-sensitive neurons indicate the presence of nearby objects.
Events occur when changes are sensed by the animal.
We model a neuromorphic closed-loop system mimicking behaviours observed in flying insects.
- Score: 0.17812428873698402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many animals meander in environments and avoid collisions. How the underlying
neuronal machinery can yield robust behaviour in a variety of environments
remains unclear. In the fly brain, motion-sensitive neurons indicate the
presence of nearby objects and directional cues are integrated within an area
known as the central complex. Such neuronal machinery, in contrast with the
traditional stream-based approach to signal processing, uses an event-based
approach, with events occurring when changes are sensed by the animal. Contrary
to von Neumann computing architectures, event-based neuromorphic hardware is
designed to process information in an asynchronous and distributed manner.
Inspired by the fly brain, we model, for the first time, a neuromorphic
closed-loop system mimicking essential behaviours observed in flying insects,
such as meandering in clutter and gap crossing, which are highly relevant for
autonomous vehicles. We implemented our system both in software and on
neuromorphic hardware. While moving through an environment, our agent perceives
changes in its surroundings and uses this information for collision avoidance.
The agent's manoeuvres result from a closed action-perception loop implementing
probabilistic decision-making processes. This loop-closure is thought to have
driven the development of neural circuitry in biological agents since the
Cambrian explosion. In the fundamental quest to understand neural computation
in artificial agents, we come closer to understanding and modelling biological
intelligence by closing the loop also in neuromorphic systems. As a closed-loop
system, our system deepens our understanding of processing in neural networks
and computations in biological and artificial systems. With these
investigations, we aim to set the foundations for neuromorphic intelligence in
the future, moving towards leveraging the full potential of neuromorphic
systems.
Related papers
- Covariant spatio-temporal receptive fields for neuromorphic computing [1.9365675487641305]
This work combines efforts within scale theory and computational neuroscience to identify theoretically well-founded ways to process-temporal signals in neuromorphic systems.
Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
arXiv Detail & Related papers (2024-05-01T04:51:10Z) - A Neuromorphic Approach to Obstacle Avoidance in Robot Manipulation [16.696524554516294]
We develop a neuromorphic approach to obstacle avoidance on a camera-equipped manipulator.
Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN.
Our results motivate incorporating SNN learning, utilizing neuromorphic processors, and further exploring the potential of neuromorphic methods.
arXiv Detail & Related papers (2024-04-08T20:42:10Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Emulating insect brains for neuromorphic navigation [2.363032911160697]
In the present work, we emulate this neural network on the neuromorphic mixed-signal processor BrainScaleS-2 to guide bees.
All entities, including environment, sensory organs, brain, actuators, and the virtual body, run autonomously on a single BrainScaleS-2 microchip.
As BrainScaleS-2 emulates neural processes 1000 times faster than biology, 4800 consecutive bee journeys distributed over 320 generations occur within only half an hour on a single neuromorphic core.
arXiv Detail & Related papers (2023-12-31T12:05:42Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Goal-Driven Approach to Systems Neuroscience [2.6451153531057985]
Humans and animals exhibit a range of interesting behaviors in dynamic environments.
It is unclear how our brains actively reformat this dense sensory information to enable these behaviors.
We offer a new definition of interpretability that we show has promise in yielding unified structural and functional models of neural circuits.
arXiv Detail & Related papers (2023-11-05T16:37:53Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.