論文の概要: Fast Graph Learning with Unique Optimal Solutions
- arxiv url: http://arxiv.org/abs/2102.08530v1
- Date: Wed, 17 Feb 2021 02:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 22:25:32.021399
- Title: Fast Graph Learning with Unique Optimal Solutions
- Title(参考訳): 独自の最適解による高速グラフ学習
- Authors: Sami Abu-El-Haija, Valentino Crespi, Greg Ver Steeg, Aram Galstyan
- Abstract要約: 既知のクローズドフォームソリューションで対流目標を最適化する効率的なGLL法を提案します。
提案手法は, GRLタスクにおける競合性能や最新性能を実現する。
- 参考スコア(独自算出の注目度): 31.411988486916545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Representation Learning (GRL) has been advancing at an unprecedented
rate. However, many results rely on careful design and tuning of architectures,
objectives, and training schemes. We propose efficient GRL methods that
optimize convexified objectives with known closed form solutions. Guaranteed
convergence to a global optimum releases practitioners from hyper-parameter and
architecture tuning. Nevertheless, our proposed method achieves competitive or
state-of-the-art performance on popular GRL tasks while providing orders of
magnitude speedup. Although the design matrix ($\mathbf{M}$) of our objective
is expensive to compute, we exploit results from random matrix theory to
approximate solutions in linear time while avoiding an explicit calculation of
$\mathbf{M}$. Our code is online: http://github.com/samihaija/tf-fsvd
- Abstract(参考訳): グラフ表現学習(GRL)は前例のない速度で進んでいます。
しかし、多くの結果はアーキテクチャや目的、トレーニングスキームの設計とチューニングに頼っている。
既知のクローズドフォームソリューションで対流目標を最適化する効率的なGLL法を提案します。
グローバル最適リリースへのコンバーゼンス保証 ハイパーパラメータとアーキテクチャチューニングによる実践者。
しかし,提案手法は,GRLタスクにおける競合性や最先端性を実現し,桁違いの高速化を実現している。
私たちの目的の設計行列($\mathbf{M}$)は計算するのに高価ですが、$\mathbf{M}$の明示的な計算を避けながら、ランダム行列理論から線形時間の近似解への結果を利用します。
コードはオンラインです: http://github.com/samihaija/tf-fsvd
関連論文リスト
- Sparsity-Constraint Optimization via Splicing Iteration [1.3622424109977902]
我々は sPlicing itEration (SCOPE) を用いたスペーサリティ制約最適化アルゴリズムを開発した。
SCOPEはパラメータをチューニングせずに効率的に収束する。
SCOPEを用いて2次最適化を解き、スパース分類器を学習し、バイナリ変数のスパースマルコフネットワークを復元する。
C++実装に基づいたオープンソースのPythonパッケージskscopeがGitHubで公開されている。
論文 参考訳(メタデータ) (2024-06-17T18:34:51Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
本研究の目的は、最適化問題に対処する機械学習(ML)を用いた革新的なアプローチを開発することである。
1) 粗粒スケジューラとしての解法, 2) 解緩和, 3) ILPによる正確な解法の3つのステップを含む新しい2段階のRL-to-ILPスケジューリングフレームワークを導入する。
提案フレームワークは, 正確なスケジューリング手法と比較して, 最大128ドルの高速化を実現しつつ, 同一のスケジューリング性能を示す。
論文 参考訳(メタデータ) (2023-08-19T15:52:43Z) - Landscape Surrogate: Learning Decision Losses for Mathematical
Optimization Under Partial Information [48.784330281177446]
学習統合最適化の最近の研究は、最適化が部分的にのみ観察される場合や、専門家のチューニングなしに汎用性が不十分な環境では有望であることを示している。
本稿では,$fcirc mathbfg$の代替として,スムーズで学習可能なランドスケープサロゲートを提案する。
このサロゲートはニューラルネットワークによって学習可能で、$mathbfg$ソルバよりも高速に計算でき、トレーニング中に密度が高く滑らかな勾配を提供し、目に見えない最適化問題に一般化でき、交互最適化によって効率的に学習される。
論文 参考訳(メタデータ) (2023-07-18T04:29:16Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - RESPECT: Reinforcement Learning based Edge Scheduling on Pipelined Coral
Edge TPUs [12.952987240366781]
本研究は、最適化アルゴリズムの挙動を学習する強化学習(RL)に基づくスケジューリングフレームワークを提案する。
RLは、実行時のオーバーヘッドを短くすることで、ほぼ最適のスケジューリング結果を生成する。
我々のフレームワークは、商用コンパイラ上での実世界のオンチップランタイム推論速度アップを最大$sim2.5times$で実証しています。
論文 参考訳(メタデータ) (2023-04-10T17:22:12Z) - DOGE-Train: Discrete Optimization on GPU with End-to-end Training [28.795080637690095]
0-1整数線形プログラムの緩和を解くために,高速でスケーラブルなデータ駆動型手法を提案する。
グラフニューラルネットワーク(GNN)とラグランジュ分解に基づくアルゴリズムであるFastDOGを用いる。
論文 参考訳(メタデータ) (2022-05-23T21:09:41Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
最適化への学習(L2O)は、機械学習を活用して最適化方法を開発する新しいアプローチです。
この記事では、継続的最適化のためのL2Oの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2021-03-23T20:46:20Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。