論文の概要: Sparsity-Constraint Optimization via Splicing Iteration
- arxiv url: http://arxiv.org/abs/2406.12017v1
- Date: Mon, 17 Jun 2024 18:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:16:57.248545
- Title: Sparsity-Constraint Optimization via Splicing Iteration
- Title(参考訳): スプライシングイテレーションによる空間制約最適化
- Authors: Zezhi Wang, Jin Zhu, Junxian Zhu, Borui Tang, Hongmei Lin, Xueqin Wang,
- Abstract要約: 我々は sPlicing itEration (SCOPE) を用いたスペーサリティ制約最適化アルゴリズムを開発した。
SCOPEはパラメータをチューニングせずに効率的に収束する。
SCOPEを用いて2次最適化を解き、スパース分類器を学習し、バイナリ変数のスパースマルコフネットワークを復元する。
C++実装に基づいたオープンソースのPythonパッケージskscopeがGitHubで公開されている。
- 参考スコア(独自算出の注目度): 1.3622424109977902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparsity-constraint optimization has wide applicability in signal processing, statistics, and machine learning. Existing fast algorithms must burdensomely tune parameters, such as the step size or the implementation of precise stop criteria, which may be challenging to determine in practice. To address this issue, we develop an algorithm named Sparsity-Constraint Optimization via sPlicing itEration (SCOPE) to optimize nonlinear differential objective functions with strong convexity and smoothness in low dimensional subspaces. Algorithmically, the SCOPE algorithm converges effectively without tuning parameters. Theoretically, SCOPE has a linear convergence rate and converges to a solution that recovers the true support set when it correctly specifies the sparsity. We also develop parallel theoretical results without restricted-isometry-property-type conditions. We apply SCOPE's versatility and power to solve sparse quadratic optimization, learn sparse classifiers, and recover sparse Markov networks for binary variables. The numerical results on these specific tasks reveal that SCOPE perfectly identifies the true support set with a 10--1000 speedup over the standard exact solver, confirming SCOPE's algorithmic and theoretical merits. Our open-source Python package skscope based on C++ implementation is publicly available on GitHub, reaching a ten-fold speedup on the competing convex relaxation methods implemented by the cvxpy library.
- Abstract(参考訳): スパシティ制約最適化は、信号処理、統計処理、機械学習に広く適用可能である。
既存の高速アルゴリズムは、ステップサイズや正確な停止基準の実装などのパラメータをかなり調整しなければならない。
この問題に対処するため、sPlicing itEration (SCOPE) を用いて、低次元部分空間における強い凸性と滑らか性を持つ非線形微分対象関数を最適化するスペーサ性制約最適化アルゴリズムを開発した。
アルゴリズム的には、SCOPEアルゴリズムはパラメータをチューニングせずに効率的に収束する。
理論的には、SCOPE は線型収束率を持ち、空間が正しく特定されたときに真の支持集合を回復する解に収束する。
また,制約等距離-固有型条件を伴わない並列理論結果も開発する。
SCOPEの汎用性とパワーを適用し、スパース2次最適化を解き、スパース分類器を学習し、バイナリ変数のスパースマルコフネットワークを復元する。
これらの特定のタスクに関する数値結果から、SCOPEは10-1000の精度で真のサポートセットを正しく識別し、SCOPEのアルゴリズム的および理論的利点を確認する。
C++実装に基づいたオープンソースのPythonパッケージのskscopeがGitHubで公開されており、cvxpyライブラリによって実装された競合する凸緩和メソッドの10倍のスピードアップに達しています。
関連論文リスト
- Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - The Minimax Complexity of Distributed Optimization [0.0]
分散最適化に適用可能な古典的なオラクルフレームワークの拡張である「グラフオラクルモデル」を紹介します。
私は「間欠的コミュニケーション設定」の具体例に焦点をあてる
コンベックス設定におけるSGD(Local Descent)アルゴリズムの理論的特性を解析する。
論文 参考訳(メタデータ) (2021-09-01T15:18:33Z) - Distributed Learning and Democratic Embeddings: Polynomial-Time Source
Coding Schemes Can Achieve Minimax Lower Bounds for Distributed Gradient
Descent under Communication Constraints [46.17631511884969]
我々は、n次元ユークリッド空間においてベクトルを圧縮する問題を考える。
数値化器の被覆効率が次元独立であるか、あるいは非常に弱い対数依存であるという意味では、民主主義的および民主的に近いソースコーディングスキームが(ほぼ)最適であることを示す。
分散最適化アルゴリズムDGD-DEFを提案する。このアルゴリズムは,提案した符号化戦略を用いて,(ほぼ)定数要素内における最小収束率を実現する。
論文 参考訳(メタデータ) (2021-03-13T00:04:11Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
我々は、$tildeO(L5/6 T2/3)$ regretで最適な複雑性に適応するメタアルゴリズムを提案する。
また、メタアルゴリズムは、インスタンス依存の後悔境界を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-11-19T10:00:54Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。