Ensemble Transfer Learning of Elastography and B-mode Breast Ultrasound
Images
- URL: http://arxiv.org/abs/2102.08567v1
- Date: Wed, 17 Feb 2021 04:23:30 GMT
- Title: Ensemble Transfer Learning of Elastography and B-mode Breast Ultrasound
Images
- Authors: Sampa Misra, Seungwan Jeon, Ravi Managuli, Seiyon Lee, Gyuwon Kim,
Seungchul Lee, Richard G Barr, and Chulhong Kim
- Abstract summary: We present an ensemble transfer learning model to classify benign and malignant breast tumors.
This model combines semantic features from AlexNet & ResNet models to classify benign from malignant tumors.
Experimental results show that our ensemble model achieves a sensitivity of 88.89% and specificity of 91.10%.
- Score: 3.3615086420912745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer-aided detection (CAD) of benign and malignant breast lesions becomes
increasingly essential in breast ultrasound (US) imaging. The CAD systems rely
on imaging features identified by the medical experts for their performance,
whereas deep learning (DL) methods automatically extract features from the
data. The challenge of the DL is the insufficiency of breast US images
available to train the DL models. Here, we present an ensemble transfer
learning model to classify benign and malignant breast tumors using B-mode
breast US (B-US) and strain elastography breast US (SE-US) images. This model
combines semantic features from AlexNet & ResNet models to classify benign from
malignant tumors. We use both B-US and SE-US images to train the model and
classify the tumors. We retrospectively gathered 85 patients' data, with 42
benign and 43 malignant cases confirmed with the biopsy. Each patient had
multiple B-US and their corresponding SE-US images, and the total dataset
contained 261 B-US images and 261 SE-US images. Experimental results show that
our ensemble model achieves a sensitivity of 88.89% and specificity of 91.10%.
These diagnostic performances of the proposed method are equivalent to or
better than manual identification. Thus, our proposed ensemble learning method
would facilitate detecting early breast cancer, reliably improving patient
care.
Related papers
- Breast tumor classification based on self-supervised contrastive learning from ultrasound videos [7.825379326219145]
We adopted a triplet network and a self-supervised contrastive learning technique to learn representations from unlabeled breast ultrasound video clips.
Our model achieved an area under the receiver operating characteristic curve (AUC) of 0.952, which is significantly higher than the others.
The proposed framework greatly reduces the demand for labeled data and holds potential for use in automatic breast ultrasound image diagnosis.
arXiv Detail & Related papers (2024-08-20T07:16:01Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Breast Ultrasound Report Generation using LangChain [58.07183284468881]
We propose the integration of multiple image analysis tools through a LangChain using Large Language Models (LLM) into the breast reporting process.
Our method can accurately extract relevant features from ultrasound images, interpret them in a clinical context, and produce comprehensive and standardized reports.
arXiv Detail & Related papers (2023-12-05T00:28:26Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models [0.0]
Hematoxylin and Eosin are considered the gold standard for cancer diagnoses.
Based on the idea of dividing the pathologic image (WSI) into multiple patches, we used the window [512,512] sliding from left to right and sliding from top to bottom, each sliding step overlapping by 50% to augmented data on a dataset of 400 images.
The EffficientNet model is a recently developed model that uniformly scales the width, depth, and resolution of the network with a set of fixed scaling factors that are well suited for training images with high resolution.
arXiv Detail & Related papers (2022-07-03T13:56:44Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Deep Learning models for benign and malign Ocular Tumor Growth
Estimation [3.1558405181807574]
Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data.
A strategy for the selection of a proper model is presented here.
arXiv Detail & Related papers (2021-07-09T05:40:25Z) - Comparison of different CNNs for breast tumor classification from
ultrasound images [12.98780709853981]
classifying benign and malignant tumors from ultrasound (US) imaging is a crucial but challenging task.
We compared different Convolutional Neural Networks (CNNs) and transfer learning methods for the task of automated breast tumor classification.
The best performance was obtained by fine tuning VGG-16, with an accuracy of 0.919 and an AUC of 0.934.
arXiv Detail & Related papers (2020-12-28T22:54:08Z) - Breast Cancer Detection Using Convolutional Neural Networks [0.0]
Breast cancer is prevalent in Ethiopia that accounts 34% among women cancer patients.
Deep learning techniques are revolutionizing the field of medical image analysis.
Our model detects mass region and classifies them into benign or malignant abnormality in mammogram(MG) images at once.
arXiv Detail & Related papers (2020-03-17T19:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.