Comparison of different CNNs for breast tumor classification from
ultrasound images
- URL: http://arxiv.org/abs/2012.14517v1
- Date: Mon, 28 Dec 2020 22:54:08 GMT
- Title: Comparison of different CNNs for breast tumor classification from
ultrasound images
- Authors: Jorge F. Lazo, Sara Moccia, Emanuele Frontoni and Elena De Momi
- Abstract summary: classifying benign and malignant tumors from ultrasound (US) imaging is a crucial but challenging task.
We compared different Convolutional Neural Networks (CNNs) and transfer learning methods for the task of automated breast tumor classification.
The best performance was obtained by fine tuning VGG-16, with an accuracy of 0.919 and an AUC of 0.934.
- Score: 12.98780709853981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is one of the deadliest cancer worldwide. Timely detection
could reduce mortality rates. In the clinical routine, classifying benign and
malignant tumors from ultrasound (US) imaging is a crucial but challenging
task. An automated method, which can deal with the variability of data is
therefore needed.
In this paper, we compared different Convolutional Neural Networks (CNNs) and
transfer learning methods for the task of automated breast tumor
classification. The architectures investigated in this study were VGG-16 and
Inception V3. Two different training strategies were investigated: the first
one was using pretrained models as feature extractors and the second one was to
fine-tune the pre-trained models. A total of 947 images were used, 587
corresponded to US images of benign tumors and 360 with malignant tumors. 678
images were used for the training and validation process, while 269 images were
used for testing the models.
Accuracy and Area Under the receiver operating characteristic Curve (AUC)
were used as performance metrics. The best performance was obtained by fine
tuning VGG-16, with an accuracy of 0.919 and an AUC of 0.934. The obtained
results open the opportunity to further investigation with a view of improving
cancer detection.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - LCDctCNN: Lung Cancer Diagnosis of CT scan Images Using CNN Based Model [0.0]
We proposed a deep learning model-based Convolutional Neural Network framework for the early detection of lung cancer using CT scan images.
It achieved an accuracy of 92%, AUC of 98.21%, recall of 91.72%, and loss of 0.328.
arXiv Detail & Related papers (2023-04-10T18:47:20Z) - Classification of Breast Tumours Based on Histopathology Images Using
Deep Features and Ensemble of Gradient Boosting Methods [0.0]
Deep feature transfer learning is used as the main idea of the proposed CAD system's feature extractor.
Inception-ResNet-v2 has shown the best feature extraction capability in the case of breast cancer histopathology images.
In the classification phase, the ensemble of CatBoost, XGBoost and LightGBM has provided the best average accuracy.
arXiv Detail & Related papers (2022-09-03T09:27:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Ensemble Transfer Learning of Elastography and B-mode Breast Ultrasound
Images [3.3615086420912745]
We present an ensemble transfer learning model to classify benign and malignant breast tumors.
This model combines semantic features from AlexNet & ResNet models to classify benign from malignant tumors.
Experimental results show that our ensemble model achieves a sensitivity of 88.89% and specificity of 91.10%.
arXiv Detail & Related papers (2021-02-17T04:23:30Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z) - Predictive modeling of brain tumor: A Deep learning approach [0.0]
This paper presents a Convolutional Neural Network (CNN) based transfer learning approach to classify the brain MRI scans into two classes using three pre-trained models.
Experimental results show that the Resnet-50 model achieves the highest accuracy and least false negative rates as 95% and zero respectively.
arXiv Detail & Related papers (2019-11-06T09:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.