Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models
- URL: http://arxiv.org/abs/2207.05057v1
- Date: Sun, 3 Jul 2022 13:56:44 GMT
- Title: Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models
- Authors: Tat-Bao-Thien Nguyen, Minh-Vuong Ngo, Van-Phong Nguyen
- Abstract summary: Hematoxylin and Eosin are considered the gold standard for cancer diagnoses.
Based on the idea of dividing the pathologic image (WSI) into multiple patches, we used the window [512,512] sliding from left to right and sliding from top to bottom, each sliding step overlapping by 50% to augmented data on a dataset of 400 images.
The EffficientNet model is a recently developed model that uniformly scales the width, depth, and resolution of the network with a set of fixed scaling factors that are well suited for training images with high resolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to some medical imaging techniques, breast histopathology images
called Hematoxylin and Eosin are considered as the gold standard for cancer
diagnoses. Based on the idea of dividing the pathologic image (WSI) into
multiple patches, we used the window [512,512] sliding from left to right and
sliding from top to bottom, each sliding step overlapping by 50% to augmented
data on a dataset of 400 images which were gathered from the ICIAR 2018 Grand
Challenge. Then use the EffficientNet model to classify and identify the
histopathological images of breast cancer into 4 types: Normal, Benign,
Carcinoma, Invasive Carcinoma. The EffficientNet model is a recently developed
model that uniformly scales the width, depth, and resolution of the network
with a set of fixed scaling factors that are well suited for training images
with high resolution. And the results of this model give a rather competitive
classification efficiency, achieving 98% accuracy on the training set and 93%
on the evaluation set.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Skin Lesion Diagnosis Using Convolutional Neural Networks [0.30458514384586394]
This project aims to address the issue by collecting state-of-the-art techniques for image classification from various fields.
The models were trained using a dataset of 8012 images, and their performance was evaluated using 2003 images.
It's worth noting that this model is trained end-to-end, directly from the image to the labels, without the need for handcrafted feature extraction.
arXiv Detail & Related papers (2023-05-18T17:15:08Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - Classification of Breast Tumours Based on Histopathology Images Using
Deep Features and Ensemble of Gradient Boosting Methods [0.0]
Deep feature transfer learning is used as the main idea of the proposed CAD system's feature extractor.
Inception-ResNet-v2 has shown the best feature extraction capability in the case of breast cancer histopathology images.
In the classification phase, the ensemble of CatBoost, XGBoost and LightGBM has provided the best average accuracy.
arXiv Detail & Related papers (2022-09-03T09:27:00Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z) - Representation Learning of Histopathology Images using Graph Neural
Networks [12.427740549056288]
We propose a two-stage framework for WSI representation learning.
We sample relevant patches using a color-based method and use graph neural networks to learn relations among sampled patches to aggregate the image information into a single vector representation.
We demonstrate the performance of our approach for discriminating two sub-types of lung cancers, Lung Adenocarcinoma (LUAD) & Lung Squamous Cell Carcinoma (LUSC)
arXiv Detail & Related papers (2020-04-16T00:09:20Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.