Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed
Self-Training
- URL: http://arxiv.org/abs/2102.08622v1
- Date: Wed, 17 Feb 2021 08:23:15 GMT
- Title: Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed
Self-Training
- Authors: Kai Sheng Tai, Peter Bailis, Gregory Valiant
- Abstract summary: Self-training is a standard approach to semi-supervised learning where the learner's own predictions on unlabeled data are used as supervision during training.
In this paper, we reinterpret this label assignment problem as an optimal transportation problem between examples and classes.
We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm.
- Score: 38.81973113564937
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Self-training is a standard approach to semi-supervised learning where the
learner's own predictions on unlabeled data are used as supervision during
training. In this paper, we reinterpret this label assignment process as an
optimal transportation problem between examples and classes, wherein the cost
of assigning an example to a class is mediated by the current predictions of
the classifier. This formulation facilitates a practical annealing strategy for
label assignment and allows for the inclusion of prior knowledge on class
proportions via flexible upper bound constraints. The solutions to these
assignment problems can be efficiently approximated using Sinkhorn iteration,
thus enabling their use in the inner loop of standard stochastic optimization
algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10,
CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art
self-training algorithm. Additionally, we elucidate connections between our
proposed algorithm and existing confidence thresholded self-training approaches
in the context of homotopy methods in optimization. Our code is available at
https://github.com/stanford-futuredata/sinkhorn-label-allocation.
Related papers
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - CSOT: Curriculum and Structure-Aware Optimal Transport for Learning with
Noisy Labels [13.807759089431855]
Learning with noisy labels (LNL) poses a significant challenge in training a well-generalized model.
Recent advances have achieved impressive performance by identifying clean labels and corrupted labels for training.
We propose a novel optimal transport (OT) formulation, called Curriculum and Structure-aware Optimal Transport (CSOT)
arXiv Detail & Related papers (2023-12-11T09:12:50Z) - Prompt-based Pseudo-labeling Strategy for Sample-Efficient Semi-Supervised Extractive Summarization [12.582774521907227]
Semi-supervised learning (SSL) is a widely used technique in scenarios where labeled data is scarce and unlabeled data is abundant.
Standard SSL methods follow a teacher-student paradigm to first train a classification model and then use the classifier's confidence values to select pseudo-labels.
We propose a prompt-based pseudo-labeling strategy with LLMs that picks unlabeled examples with more accurate pseudo-labels.
arXiv Detail & Related papers (2023-11-16T04:29:41Z) - Confident Sinkhorn Allocation for Pseudo-Labeling [40.883130133661304]
Semi-supervised learning is a critical tool in reducing machine learning's dependence on labeled data.
This paper studies theoretically the role of uncertainty to pseudo-labeling and proposes Confident Sinkhorn Allocation (CSA)
CSA identifies the best pseudo-label allocation via optimal transport to only samples with high confidence scores.
arXiv Detail & Related papers (2022-06-13T02:16:26Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - A Unified Generative Adversarial Network Training via Self-Labeling and
Self-Attention [38.31735499785227]
We propose a novel GAN training scheme that can handle any level of labeling in a unified manner.
Our scheme introduces a form of artificial labeling that can incorporate manually defined labels, when available.
We evaluate our approach on CIFAR-10, STL-10 and SVHN, and show that both self-labeling and self-attention consistently improve the quality of generated data.
arXiv Detail & Related papers (2021-06-18T04:40:26Z) - Semi-Supervised Speech Recognition via Graph-based Temporal
Classification [59.58318952000571]
Semi-supervised learning has demonstrated promising results in automatic speech recognition by self-training.
The effectiveness of this approach largely relies on the pseudo-label accuracy.
Alternative ASR hypotheses of an N-best list can provide more accurate labels for an unlabeled speech utterance.
arXiv Detail & Related papers (2020-10-29T14:56:56Z) - Posterior Re-calibration for Imbalanced Datasets [33.379680556475314]
Neural Networks can perform poorly when the training label distribution is heavily imbalanced.
We derive a post-training prior rebalancing technique that can be solved through a KL-divergence based optimization.
Our results on six different datasets and five different architectures show state of art accuracy.
arXiv Detail & Related papers (2020-10-22T15:57:14Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.