論文の概要: Accelerated Simulations of Molecular Systems through Learning of their
Effective Dynamics
- arxiv url: http://arxiv.org/abs/2102.08810v1
- Date: Wed, 17 Feb 2021 15:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 14:25:51.960093
- Title: Accelerated Simulations of Molecular Systems through Learning of their
Effective Dynamics
- Title(参考訳): 効果的な動力学の学習による分子系の加速シミュレーション
- Authors: Pantelis R. Vlachas, Julija Zavadlav, Matej Praprotnik, Petros
Koumoutsakos
- Abstract要約: 本稿では,最大3桁のシミュレーションを行うための新しい枠組みを提案する。
ledは分子系の効果的なダイナミクスを学ぶ。
我々は、M"ueller-Brown電位、Trp Cageタンパク質、およびアラニンジペプチドにおけるLEDの有効性を実証する。
- 参考スコア(独自算出の注目度): 4.276697874428501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations are vital for understanding and predicting the evolution of
complex molecular systems. However, despite advances in algorithms and special
purpose hardware, accessing the timescales necessary to capture the structural
evolution of bio-molecules remains a daunting task. In this work we present a
novel framework to advance simulation timescales by up to three orders of
magnitude, by learning the effective dynamics (LED) of molecular systems. LED
augments the equation-free methodology by employing a probabilistic mapping
between coarse and fine scales using mixture density network (MDN) autoencoders
and evolves the non-Markovian latent dynamics using long short-term memory
MDNs. We demonstrate the effectiveness of LED in the M\"ueller-Brown potential,
the Trp Cage protein, and the alanine dipeptide. LED identifies explainable
reduced-order representations and can generate, at any instant, the respective
all-atom molecular trajectories. We believe that the proposed framework
provides a dramatic increase to simulation capabilities and opens new horizons
for the effective modeling of complex molecular systems.
- Abstract(参考訳): 複雑な分子系の進化を理解し予測するにはシミュレーションが不可欠です。
しかし、アルゴリズムと特殊なハードウェアの進歩にもかかわらず、生体分子の構造的進化を捉えるのに必要な時間スケールにアクセスすることは大変な作業である。
本稿では,分子系の有効動力学(led)を学習することにより,最大3桁までのシミュレーション時間スケールを前進させる新しい枠組みを提案する。
ledは混合密度ネットワーク(mdn)オートエンコーダを用いた粗スケールと微スケールの確率的マッピングを採用し、長期短期記憶mdnsを用いた非マルコフ的潜在ダイナミクスを進化させる。
我々は、M\"ueller-Brown電位、Trp Cageタンパク質、およびアラニンジペプチドにおけるLEDの有効性を実証する。
LEDは説明可能な低次表現を識別し、任意の瞬間に各全原子分子軌道を生成することができる。
提案手法はシミュレーション能力の劇的な向上をもたらし,複雑な分子系の効率的なモデリングのための新たな地平線を開くものと考えられる。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy [1.7633275579210346]
我々は,強化サンプリングと深層生成モデルを組み合わせるアプローチと,機械学習ポテンシャルの能動的学習を併用したアプローチを開発する。
本手法を用いて, 医療・生物学分野における多種多様なシステム群に属する超小型の銀ナノクラスターの異性化について検討する。
論文 参考訳(メタデータ) (2024-01-29T19:01:31Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
ニューラルネットワーク電位(NNP)と分子力学(MM)を組み合わせたハイブリッド手法(NNP/MM)の最適化実装を提案する。
このアプローチは、小さな分子のようなシステムの一部をNNPを用いてモデル化し、残りのシステムにMMを用いて効率を向上する。
これにより, シミュレーション速度を5倍に向上し, 複合体毎の1マイクロ秒の同時サンプリングを実現し, この種のシミュレーションで報告された最長のシミュレーションとなった。
論文 参考訳(メタデータ) (2022-01-20T10:57:20Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
機械学習(ML)の異なる手法を探索し、後処理のステップで分子動力学軌道の解像度をオンデマンドで向上する。
サーモスタット軌道の局所的時間対称性を利用して、長距離相関を学習し、分子の複雑さにまたがる雑音のダイナミックスに対して高いロバスト性を示すことができる。
論文 参考訳(メタデータ) (2022-01-02T23:00:30Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Molecular Latent Space Simulators [8.274472944075713]
本研究では、連続的な全原子シミュレーション軌道の運動モデルを学ぶための潜在空間シミュレータ(LSS)を提案する。
Trpタンパク質を応用して, 新規な超長尺合成折りたたみ路を創出する手法を実証する。
論文 参考訳(メタデータ) (2020-07-01T20:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。