論文の概要: Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning
- arxiv url: http://arxiv.org/abs/2306.05445v1
- Date: Thu, 8 Jun 2023 17:12:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 16:05:27.121919
- Title: Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning
- Title(参考訳): 深層学習による分子系の平衡分布予測に向けて
- Authors: Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng,
Fusong Ju, Jiaxi Wang, Jianwei Zhu, Yaosen Min, He Zhang, Shidi Tang, Hongxia
Hao, Peiran Jin, Chi Chen, Frank No\'e, Haiguang Liu, Tie-Yan Liu
- Abstract要約: 本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
- 参考スコア(独自算出の注目度): 60.02391969049972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in deep learning have greatly improved structure prediction of
molecules. However, many macroscopic observations that are important for
real-world applications are not functions of a single molecular structure, but
rather determined from the equilibrium distribution of structures. Traditional
methods for obtaining these distributions, such as molecular dynamics
simulation, are computationally expensive and often intractable. In this paper,
we introduce a novel deep learning framework, called Distributional Graphormer
(DiG), in an attempt to predict the equilibrium distribution of molecular
systems. Inspired by the annealing process in thermodynamics, DiG employs deep
neural networks to transform a simple distribution towards the equilibrium
distribution, conditioned on a descriptor of a molecular system, such as a
chemical graph or a protein sequence. This framework enables efficient
generation of diverse conformations and provides estimations of state
densities. We demonstrate the performance of DiG on several molecular tasks,
including protein conformation sampling, ligand structure sampling,
catalyst-adsorbate sampling, and property-guided structure generation. DiG
presents a significant advancement in methodology for statistically
understanding molecular systems, opening up new research opportunities in
molecular science.
- Abstract(参考訳): ディープラーニングの進歩は分子の構造予測を大幅に改善した。
しかし、実世界の応用において重要な多くの巨視的観測は単一の分子構造の関数ではなく、むしろ構造の平衡分布から決定される。
分子動力学シミュレーションのようなこれらの分布を得る伝統的な方法は計算コストが高く、しばしば難解である。
本稿では,分子系の平衡分布を予測するために,分散グラフマー(distributional graphormer, dig)と呼ばれる新しいディープラーニングフレームワークを提案する。
熱力学におけるアニール過程にインスパイアされたDiGは、化学グラフやタンパク質配列などの分子系の記述子に条件付けられた単純な分布を平衡分布へ変換するために、ディープニューラルネットワークを使用する。
このフレームワークは多様なコンフォメーションの効率的な生成を可能にし、状態密度の推定を提供する。
タンパク質コンホメーションサンプリング,リガンド構造サンプリング,触媒吸着サンプリング,特性誘導構造生成など,いくつかの分子課題におけるDiGの性能を示す。
DiGは、分子系を統計的に理解するための方法論において重要な進歩を示し、分子科学における新たな研究機会を開く。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
分子表現学習は、AIによる薬物発見研究において重要な役割を担っている。
本研究では,その分子表面のラプラス・ベルトラミ固有関数を用いた分子を表現する高調波分子表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T18:02:47Z) - Modeling Molecular Structures with Intrinsic Diffusion Models [2.487445341407889]
本論文は本質的拡散モデリングを提案する。
拡散生成モデルと生物学的複合体の柔軟性に関する科学的知識を組み合わせる。
計算化学と生物学に基づく2つの基本的な課題に対して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-02-23T03:26:48Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
本稿では,単純な分子システムから得られた知識をより複雑なものに伝達するための新しい手法を提案する。
我々は、高低自由エネルギー状態の分類に焦点をあてる。
以上の結果より, トリアラニンからデカアラニン系への移行学習において, 0.92 の顕著な AUC が得られた。
論文 参考訳(メタデータ) (2022-05-06T16:21:00Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
本稿では,粗大な力場の機械学習のためのハイブリッドアーキテクチャを導入し,サブネットワークを介してそれぞれの特徴を学習する。
この枠組みは, 生体分子系における熱力学の再現に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T13:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。