論文の概要: Genetically Optimized Prediction of Remaining Useful Life
- arxiv url: http://arxiv.org/abs/2102.08845v1
- Date: Wed, 17 Feb 2021 16:09:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-19 05:16:31.027873
- Title: Genetically Optimized Prediction of Remaining Useful Life
- Title(参考訳): 遺伝学的に最適化された余命の予測
- Authors: Shaashwat Agrawal, Sagnik Sarkar, Gautam Srivastava, Praveen Kumar
Reddy Maddikunta, Thippa Reddy Gadekallu
- Abstract要約: LSTMおよびGRUモデルを実装し、得られた結果と提案された遺伝子訓練ニューラルネットワークを比較します。
遺伝的アルゴリズムを用いた他の最適化層を追加することによって,予測の整合性の向上を期待する。
これらのモデルと提案されたアーキテクチャは、nasaのターボファンジェットエンジンデータセットでテストされている。
- 参考スコア(独自算出の注目度): 4.115847582689283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of remaining useful life (RUL) prediction has taken great
importance in terms of energy optimization, cost-effectiveness, and risk
mitigation. The existing RUL prediction algorithms mostly constitute deep
learning frameworks. In this paper, we implement LSTM and GRU models and
compare the obtained results with a proposed genetically trained neural
network. The current models solely depend on Adam and SGD for optimization and
learning. Although the models have worked well with these optimizers, even
little uncertainties in prognostics prediction can result in huge losses. We
hope to improve the consistency of the predictions by adding another layer of
optimization using Genetic Algorithms. The hyper-parameters - learning rate and
batch size are optimized beyond manual capacity. These models and the proposed
architecture are tested on the NASA Turbofan Jet Engine dataset. The optimized
architecture can predict the given hyper-parameters autonomously and provide
superior results.
- Abstract(参考訳): 有効寿命予測(RUL)の適用は、エネルギー最適化、費用対効果、リスク軽減の観点から非常に重要である。
既存のRUL予測アルゴリズムは、主にディープラーニングフレームワークを構成する。
本稿では、LSTMとGRUモデルを実装し、得られた結果と、提案された遺伝子訓練ニューラルネットワークを比較します。
現在のモデルは最適化と学習のためにAdamとSGDにのみ依存している。
モデルはこれらのオプティマイザとうまく機能しているが、予後予測の不確実性でさえも大きな損失をもたらす可能性がある。
遺伝的アルゴリズムを用いた他の最適化層を追加することによって,予測の整合性の向上を期待する。
ハイパーパラメータ - 学習率とバッチサイズは手動容量を超えて最適化されます。
これらのモデルと提案されたアーキテクチャは、nasaのターボファンジェットエンジンデータセットでテストされている。
最適化されたアーキテクチャは、与えられたハイパーパラメータを自律的に予測し、優れた結果を提供する。
関連論文リスト
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
無線信号の自動変調分類(AMC)のための最適化畳み込みニューラルネットワーク(CNN)について検討した。
本稿では,これらの手法を組み合わせて最適化モデルを提案する。
実験結果から,提案手法と組み合わせ最適化手法は,複雑度が著しく低いモデルの開発に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-04-11T06:08:23Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
我々は、損失の大きさの経験的確率密度関数に基づく新しい枠組みを導入し、これを「緩やかな等級ヒストグラム」と呼ぶ。
そこで本稿では, 最適安全のための精密かつ高精度な探索空間を自動推定するために, 勾配等級ヒストグラムを用いた新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T04:34:19Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Target Variable Engineering [0.0]
数値的対象を予測するために訓練された回帰モデルの予測性能と、2項化対象を予測するために訓練された分類器を比較した。
回帰は最適性能に収束するためには、はるかに多くの計算作業を必要とする。
論文 参考訳(メタデータ) (2023-10-13T23:12:21Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
本稿では,遺伝的アルゴリズム (GA), 微分進化 (DE), 粒子群最適化 (PSO) のメタヒューリスティックアルゴリズムの適用について検討する。
平均二乗誤差(MSE)や平均絶対パーセンテージ誤差(MAPE)といった指標に基づいて天気予報の性能を評価する。
論文 参考訳(メタデータ) (2023-09-05T22:13:35Z) - VeLO: Training Versatile Learned Optimizers by Scaling Up [67.90237498659397]
私たちは、ディープラーニングの成功の背後にある同じスケーリングアプローチを活用して、汎用性を学びます。
私たちは、パラメータの更新を取り込み出力する小さなニューラルネットワークであるディープラーニングのためのインジェクションをトレーニングします。
学習したメタトレーニングコード、関連するトレインテストデータ、およびvelo-code.ioのベースラインを備えた広範なベンチマークスイートをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2022-11-17T18:39:07Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
形状最適化に適した不確実性に基づく新しい手法を提案する。
効果的なBOを可能にし、その結果の形状の質を最先端のアプローチを超えて向上させる。
論文 参考訳(メタデータ) (2021-09-28T11:01:42Z) - A Study of Genetic Algorithms for Hyperparameter Optimization of Neural
Networks in Machine Translation [0.0]
遺伝的アルゴリズムを用いて,ダーウィンのファイトテスト理論の生存をモデルとした自動チューニング手法を提案する。
研究結果は,提案手法であるGAがハイパーパラメータのランダムな選択よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-09-15T02:24:16Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。