Counterfactual Inference of the Mean Outcome under a Convergence of
Average Logging Probability
- URL: http://arxiv.org/abs/2102.08975v1
- Date: Wed, 17 Feb 2021 19:05:53 GMT
- Title: Counterfactual Inference of the Mean Outcome under a Convergence of
Average Logging Probability
- Authors: Masahiro Kato
- Abstract summary: This paper considers estimating the mean outcome of an action from samples obtained in adaptive experiments.
In adaptive experiments, the probability of choosing an action is allowed to be sequentially updated based on past observations.
- Score: 5.596752018167751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive experiments, including efficient average treatment effect estimation
and multi-armed bandit algorithms, have garnered attention in various
applications, such as social experiments, clinical trials, and online
advertisement optimization. This paper considers estimating the mean outcome of
an action from samples obtained in adaptive experiments. In causal inference,
the mean outcome of an action has a crucial role, and the estimation is an
essential task, where the average treatment effect estimation and off-policy
value estimation are its variants. In adaptive experiments, the probability of
choosing an action (logging probability) is allowed to be sequentially updated
based on past observations. Due to this logging probability depending on the
past observations, the samples are often not independent and identically
distributed (i.i.d.), making developing an asymptotically normal estimator
difficult. A typical approach for this problem is to assume that the logging
probability converges in a time-invariant function. However, this assumption is
restrictive in various applications, such as when the logging probability
fluctuates or becomes zero at some periods. To mitigate this limitation, we
propose another assumption that the average logging probability converges to a
time-invariant function and show the doubly robust (DR) estimator's asymptotic
normality. Under the assumption, the logging probability itself can fluctuate
or be zero for some actions. We also show the empirical properties by
simulations.
Related papers
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
We propose a novel process called the logistic-beta process, whose logistic transformation yields a process with common beta marginals.
It can model dependence on both discrete and continuous domains, such as space or time, and has a flexible dependence structure through correlation kernels.
We illustrate the benefits through nonparametric binary regression and conditional density estimation examples, both in simulation studies and in a pregnancy outcome application.
arXiv Detail & Related papers (2024-02-10T21:41:32Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - Counterfactual inference for sequential experiments [17.817769460838665]
We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points.
Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale.
We illustrate our theory via several simulations and a case study involving data from a mobile health clinical trial HeartSteps.
arXiv Detail & Related papers (2022-02-14T17:24:27Z) - Variance Minimization in the Wasserstein Space for Invariant Causal
Prediction [72.13445677280792]
In this work, we show that the approach taken in ICP may be reformulated as a series of nonparametric tests that scales linearly in the number of predictors.
Each of these tests relies on the minimization of a novel loss function that is derived from tools in optimal transport theory.
We prove under mild assumptions that our method is able to recover the set of identifiable direct causes, and we demonstrate in our experiments that it is competitive with other benchmark causal discovery algorithms.
arXiv Detail & Related papers (2021-10-13T22:30:47Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Tolerance and Prediction Intervals for Non-normal Models [0.0]
A prediction interval covers a future observation from a random process in repeated sampling.
A tolerance interval covers a population percentile in repeated sampling and is often based on a pivotal quantity.
arXiv Detail & Related papers (2020-11-23T17:48:09Z) - Valid Causal Inference with (Some) Invalid Instruments [24.794879633855373]
We show how to perform consistent IV estimation despite violations of the exclusion assumption.
We achieve accurate estimates of conditional average treatment effects using an ensemble of deep network-based estimators.
arXiv Detail & Related papers (2020-06-19T21:09:26Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
We propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects.
Existing methods suffer from a significant coverage deficit even in simple models.
arXiv Detail & Related papers (2020-06-11T01:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.