Relativistic quantum fluid with boost invariance
- URL: http://arxiv.org/abs/2102.09016v1
- Date: Wed, 17 Feb 2021 20:24:46 GMT
- Title: Relativistic quantum fluid with boost invariance
- Authors: D. Rindori (U. Florence), L. Tinti (U. Kielce), F. Becattini (U.
Florence), D. Rischke (U. Frankfurt)
- Abstract summary: We study a relativistic fluid with longitudinal boost invariance in a quantum-statistical framework.
For the free quantum field, we calculate the exact form of the expectation values of the stress-energy tensor and the entropy current.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a relativistic fluid with longitudinal boost invariance in a
quantum-statistical framework as an example of a solvable non-equilibrium
problem. For the free quantum field, we calculate the exact form of the
expectation values of the stress-energy tensor and the entropy current. For the
stress-energy tensor, we find that a finite value can be obtained only by
subtracting the vacuum of the density operator at some fixed proper time
\tau_0. As a consequence, the stress-energy tensor acquires non-trivial quantum
corrections to the classical free-streaming form.
Related papers
- Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Adherence and violation of the equivalence principle from classical to
quantum mechanics [0.0]
An inhomogeneous gravitational field tidal effects couple the center of mass motion to the quantum fluctuations.
The size of this violation is within sensitivities of current Eotvos and clock-based return time experiments.
arXiv Detail & Related papers (2023-10-13T16:12:31Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Generalised linear response theory for the full quantum work statistics [0.3277163122167433]
We study a quantum system driven out of equilibrium via a small Hamiltonian perturbation.
We find that all information about the distribution can be encoded in a single quantity.
arXiv Detail & Related papers (2023-07-04T19:06:50Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum-Fluid Correspondence in Relativistic Fluids with Spin: From Madelung Form to Gravitational Coupling [0.0]
We show that the inclusion of spin introduces a quantum correction to the classical fluid energy.
We extend the formalism to a relativistic perfect fluid, identifying the system's stress-energy-momentum tensor.
This theoretical framework offers potential applications for studying fluid-like systems with internal rotational degrees of freedom.
arXiv Detail & Related papers (2022-02-18T03:08:49Z) - Induced osmotic vorticity in the quantum hydrodynamical picture [0.0]
Solution entails attenuation related effects as non-unitary evolution, non-exponential quantum decay and entropy production.
Time-invariant equation for the probability density is derived, analogous to the tensor Lighthill equation in aeroacoustics.
arXiv Detail & Related papers (2021-06-24T17:58:51Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.