HVAQ: A High-Resolution Vision-Based Air Quality Dataset
- URL: http://arxiv.org/abs/2102.09332v1
- Date: Thu, 18 Feb 2021 13:42:34 GMT
- Title: HVAQ: A High-Resolution Vision-Based Air Quality Dataset
- Authors: Zuohui Chen, Tony Zhang, Zhuangzhi Chen, Yun Xiang, Qi Xuan, and
Robert P. Dick
- Abstract summary: We present a high temporal and spatial resolution air quality dataset consisting of PM2.5, PM10, temperature, and humidity data.
We evaluate several vision-based state-of-art PM concentration prediction algorithms on our dataset and demonstrate that prediction accuracy increases with sensor density and image.
- Score: 3.9523800511973017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air pollutants, such as particulate matter, strongly impact human health.
Most existing pollution monitoring techniques use stationary sensors, which are
typically sparsely deployed. However, real-world pollution distributions vary
rapidly in space and the visual effects of air pollutant can be used to
estimate concentration, potentially at high spatial resolution. Accurate
pollution monitoring requires either densely deployed conventional point
sensors, at-a-distance vision-based pollution monitoring, or a combination of
both.
This paper makes the following contributions: (1) we present a high temporal
and spatial resolution air quality dataset consisting of PM2.5, PM10,
temperature, and humidity data; (2) we simultaneously take images covering the
locations of the particle counters; and (3) we evaluate several vision-based
state-of-art PM concentration prediction algorithms on our dataset and
demonstrate that prediction accuracy increases with sensor density and image.
It is our intent and belief that this dataset can enable advances by other
research teams working on air quality estimation.
Related papers
- Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features [11.845097068829551]
This paper proposes a framework for high-temporal Air Quality Index mapping.
We estimate AQI values at untemporaled locations based on both spatial and temporal dependencies.
We illustrate the use of our approach through a case study in Lahore, Pakistan.
arXiv Detail & Related papers (2025-01-20T04:39:13Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality.
We introduce a data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements.
This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution.
arXiv Detail & Related papers (2024-01-16T18:03:07Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - IoT-Based Air Quality Monitoring System with Machine Learning for
Accurate and Real-time Data Analysis [0.0]
We propose the development of a portable air quality detection device that can be used anywhere.
The data collected will be stored and visualized using the cloud-based web app ThinkSpeak.
arXiv Detail & Related papers (2023-07-02T14:18:04Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Towards Spatial Equilibrium Object Detection [88.9747319572368]
In this paper, we study the spatial disequilibrium problem of modern object detectors.
We propose to quantify this problem by measuring the detection performance over zones.
This motivates us to design a more generalized measurement, termed Spatial equilibrium Precision.
arXiv Detail & Related papers (2023-01-14T17:33:26Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
This paper introduces the first paired real image benchmark dataset with hazy and haze-free images, and in-situ haze density measurements.
This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene.
A subset of this dataset has been used for the Object Detection in Haze Track of CVPR UG2 2022 challenge.
arXiv Detail & Related papers (2022-06-13T19:14:06Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
Existing models for surface-level air pollution rely on extensive land-use datasets which are often locally restricted and temporally static.
This work proposes a deep learning approach for the prediction of ambient air pollution that only relies on remote sensing data that is globally available and frequently updated.
arXiv Detail & Related papers (2021-08-31T14:58:04Z) - Mining atmospheric data [0.0]
The first issue relates to the building new public datasets and benchmarks.
The second issue is the investigation of deep learning methodologies for atmospheric data classification.
The targeted application is air quality assessment and prediction.
arXiv Detail & Related papers (2021-06-26T10:04:35Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.