Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
- URL: http://arxiv.org/abs/2501.11270v1
- Date: Mon, 20 Jan 2025 04:39:13 GMT
- Title: Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
- Authors: Osama Ahmad, Zubair Khalid, Muhammad Tahir, Momin Uppal,
- Abstract summary: This paper proposes a framework for high-temporal Air Quality Index mapping.
We estimate AQI values at untemporaled locations based on both spatial and temporal dependencies.
We illustrate the use of our approach through a case study in Lahore, Pakistan.
- Score: 11.845097068829551
- License:
- Abstract: Monitoring air pollution is crucial for protecting human health from exposure to harmful substances. Traditional methods of air quality monitoring, such as ground-based sensors and satellite-based remote sensing, face limitations due to high deployment costs, sparse sensor coverage, and environmental interferences. To address these challenges, this paper proposes a framework for high-resolution spatiotemporal Air Quality Index (AQI) mapping using sparse sensor data, satellite imagery, and various spatiotemporal factors. By leveraging Graph Neural Networks (GNNs), we estimate AQI values at unmonitored locations based on both spatial and temporal dependencies. The framework incorporates a wide range of environmental features, including meteorological data, road networks, points of interest (PoIs), population density, and urban green spaces, which enhance prediction accuracy. We illustrate the use of our approach through a case study in Lahore, Pakistan, where multi-resolution data is used to generate the air quality index map at a fine spatiotemporal scale.
Related papers
- Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion [6.963971634605796]
We propose a novel unsupervised domain adaptation (UDA) method specifically tailored for regression tasks on graph-structured data.
We incorporate spatial-temporal graph neural networks (STGNNs) to model the relationships between sensors.
Our approach allows low-cost IoT sensors to learn calibration parameters from expensive reference sensors.
arXiv Detail & Related papers (2024-11-11T12:20:57Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - SAT-CEP-monitor: An air quality monitoring software architecture
combining complex event processing with satellite remote sensing [2.962390297307338]
Urban areas are the most affected by the degradation of air quality caused by anthropogenic gas emissions.
We propose a software architecture that efficiently combines complex event processing with remote sensing data from various satellite sensors to monitor air quality in NRT.
arXiv Detail & Related papers (2024-01-29T17:45:23Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Air Pollution Hotspot Detection and Source Feature Analysis using
Cross-domain Urban Data [2.458537954999774]
Areas adjacent to pollution sources often have high ambient pollution concentrations, and those areas are commonly referred to as air pollution hotspots.
We propose a two-step approach to detect hotspots from mobile sensing data, which includes local spike detection and sample-weighted clustering.
As a soft-validation, we build hotspot inference models for cities with and without mobile sensing data.
arXiv Detail & Related papers (2022-11-15T18:44:03Z) - Mining atmospheric data [0.0]
The first issue relates to the building new public datasets and benchmarks.
The second issue is the investigation of deep learning methodologies for atmospheric data classification.
The targeted application is air quality assessment and prediction.
arXiv Detail & Related papers (2021-06-26T10:04:35Z) - HVAQ: A High-Resolution Vision-Based Air Quality Dataset [3.9523800511973017]
We present a high temporal and spatial resolution air quality dataset consisting of PM2.5, PM10, temperature, and humidity data.
We evaluate several vision-based state-of-art PM concentration prediction algorithms on our dataset and demonstrate that prediction accuracy increases with sensor density and image.
arXiv Detail & Related papers (2021-02-18T13:42:34Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.