論文の概要: FedMood:Federated Learning on Mobile Health Data for Mood Detection
- arxiv url: http://arxiv.org/abs/2102.09342v3
- Date: Thu, 11 Mar 2021 07:37:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 06:57:15.170811
- Title: FedMood:Federated Learning on Mobile Health Data for Mood Detection
- Title(参考訳): FedMood:Mood検出のためのモバイルヘルスデータのフェデレーション学習
- Authors: Xiaohang Xu, Hao Peng, Lichao Sun, Md Zakirul Alam Bhuiyan, Lianzhong
Liu, Lifang He
- Abstract要約: うつ病は最も一般的な精神疾患問題の1つです。
従来の集中型機械学習は、患者データを集約する必要がある。
精神疾患患者のデータのプライバシーは厳密に守らなければならない。
- 参考スコア(独自算出の注目度): 26.263092039195786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is one of the most common mental illness problems, and the
symptoms shown by patients are not consistent, making it difficult to diagnose
in the process of clinical practice and pathological research.Although
researchers hope that artificial intelligence can contribute to the diagnosis
and treatment of depression, the traditional centralized machine learning needs
to aggregate patient data, and the data privacy of patients with mental illness
needs to be strictly confidential, which hinders machine learning algorithms
clinical application.To solve the problem of privacy of the medical history of
patients with depression, we implement federated learning to analyze and
diagnose depression. First, we propose a general multi-view federated learning
framework using multi-source data,which can extend any traditional machine
learning model to support federated learning across different institutions or
parties.Secondly, we adopt late fusion methods to solve the problem of
inconsistent time series of multi-view data.Finally, we compare the federated
framework with other cooperative learning frameworks in performance and discuss
the related results.
- Abstract(参考訳): Depression is one of the most common mental illness problems, and the symptoms shown by patients are not consistent, making it difficult to diagnose in the process of clinical practice and pathological research.Although researchers hope that artificial intelligence can contribute to the diagnosis and treatment of depression, the traditional centralized machine learning needs to aggregate patient data, and the data privacy of patients with mental illness needs to be strictly confidential, which hinders machine learning algorithms clinical application.To solve the problem of privacy of the medical history of patients with depression, we implement federated learning to analyze and diagnose depression.
まず,マルチソースデータを用いた汎用多視点学習フレームワークを提案する。これは従来の機械学習モデルを拡張して,異なる機関や団体間でのフェデレート学習をサポートするもので,また,複数ビューデータの一貫性のない時系列の問題を解決するために,後期融合方式を採用する。
関連論文リスト
- UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - GDPR Compliant Collection of Therapist-Patient-Dialogues [48.091760741427656]
我々は、欧州連合の一般データプライバシ規則の下で、精神医学クリニックでセラピストと患者との対話の収集を始める際に直面した課題について詳しく述べる。
本稿では、手順の各ステップの概要を述べ、この分野でのさらなる研究を動機付ける潜在的な落とし穴を指摘した。
論文 参考訳(メタデータ) (2022-11-22T15:51:10Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - RobIn: A Robust Interpretable Deep Network for Schizophrenia Diagnosis [12.180396034315807]
統合失調症は、長く複雑な診断プロセスを必要とする重度の精神疾患である。
脳画像データから統合失調症の診断にディープラーニングを応用しようとする試みは、将来性を示しているが、大きなトレーニングと応用のギャップに悩まされている。
我々は、アクセスしやすいデータに焦点をあてて、このトレーニングとアプリケーション間のギャップを減らすことを提案する。
論文 参考訳(メタデータ) (2022-03-31T15:01:35Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Evaluation and Analysis of Different Aggregation and Hyperparameter
Selection Methods for Federated Brain Tumor Segmentation [2.294014185517203]
我々は分散学習手法であるフェデレート学習パラダイムに注目した。
研究は、連合学習が従来の中央訓練と競争力を発揮することを示した。
我々は、より高速な収束と優れた性能のための様々な戦略を探求し、強力な非IIDケースでも機能する。
論文 参考訳(メタデータ) (2022-02-16T07:49:04Z) - Distributed Learning Approaches for Automated Chest X-Ray Diagnosis [0.0]
医療機関のコンソーシアムが特定の疾患を特定するために機械学習モデルをトレーニングする必要がある場合、プライバシー問題に対処する戦略に焦点を当てる。
特に,本分析では,クライアントデータにおけるデータ分散の違いが,機関間のデータ交換頻度に与える影響について検討した。
論文 参考訳(メタデータ) (2021-10-04T14:22:29Z) - Federated Learning for Multi-Center Imaging Diagnostics: A Study in
Cardiovascular Disease [0.8687046723936027]
心臓血管磁気共鳴(CMR)のモダリティに関する第1回フェデレート学習研究について紹介する。
我々は、肥大型心筋症(HCM)の診断に焦点を当て、M&MデータセットとACDCデータセットのサブセットから派生した4つのセンターを使用する。
データのサイズが小さい(4つのセンターから180の被験者を抽出)にもかかわらず、プライバシ保護のためのフェデレーション学習が有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-07T08:54:08Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。