A Novel Non-Invasive Estimation of Respiration Rate from
Photoplethysmograph Signal Using Machine Learning Model
- URL: http://arxiv.org/abs/2102.09483v1
- Date: Thu, 18 Feb 2021 17:08:50 GMT
- Title: A Novel Non-Invasive Estimation of Respiration Rate from
Photoplethysmograph Signal Using Machine Learning Model
- Authors: Md Nazmul Islam Shuzan, Moajjem Hossain Chowdhury, Muhammad E.H.
Chowdhury, M. Monir Uddin, Amith Khandakar, Zaid B. Mahbub and Naveed Nawaz
- Abstract summary: Respiration rate (RR) is a vital indicator of the wellness of a patient.
Real-time continuous RR monitoring facility is only available at the intensive care unit (ICU)
Recent researches have proposed Photoplethysmogram (ECG) and/ Electrocardiogram (ECG) signals for RR estimation.
This paper describes a novel approach to RR estimation using machine learning (ML) models with the PPG signal features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Respiratory ailments such as asthma, chronic obstructive pulmonary disease
(COPD), pneumonia, and lung cancer are life-threatening. Respiration rate (RR)
is a vital indicator of the wellness of a patient. Continuous monitoring of RR
can provide early indication and thereby save lives. However, a real-time
continuous RR monitoring facility is only available at the intensive care unit
(ICU) due to the size and cost of the equipment. Recent researches have
proposed Photoplethysmogram (PPG) and/ Electrocardiogram (ECG) signals for RR
estimation however, the usage of ECG is limited due to the unavailability of it
in wearable devices. Due to the advent of wearable smartwatches with built-in
PPG sensors, it is now being considered for continuous monitoring of RR. This
paper describes a novel approach to RR estimation using machine learning (ML)
models with the PPG signal features. Feature selection algorithms were used to
reduce computational complexity and the chance of overfitting. The best ML
model and the best feature selection algorithm combination was fine-tuned to
optimize its performance using hyperparameter optimization. Gaussian Process
Regression (GPR) with fitrgp feature selection algorithm outperformed all other
combinations and exhibits a root mean squared error (RMSE), mean absolute error
(MAE), and two-standard deviation (2SD) of 2.57, 1.91, and 5.13 breaths per
minute, respectively. This ML model based RR estimation can be embedded in
wearable devices for real-time continuous monitoring of the patient.
Related papers
- RespDiff: An End-to-End Multi-scale RNN Diffusion Model for Respiratory Waveform Estimation from PPG Signals [3.306437812367815]
We propose RespDiff, an end-to-end multi-scale RNN model for respiratory waveform estimation from PPG signals.
The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform.
Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation.
arXiv Detail & Related papers (2024-10-06T05:54:49Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort [55.41644538483948]
This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT.
Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries.
arXiv Detail & Related papers (2023-07-03T18:06:36Z) - RRWaveNet: A Compact End-to-End Multi-Scale Residual CNN for Robust PPG
Respiratory Rate Estimation [0.6464087844700315]
Respiratory rate (RR) is an important biomarker as RR changes can reflect severe medical events such as heart disease, lung disease, and sleep disorders.
Standard RR counting is prone to human error and cannot be performed continuously.
This study proposes a method for continuously estimating RR, RRWaveNet.
arXiv Detail & Related papers (2022-08-18T07:11:34Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - An End-to-End and Accurate PPG-based Respiratory Rate Estimation
Approach Using Cycle Generative Adversarial Networks [6.248335775936125]
Respiratory rate (RR) is a clinical sign representing ventilation.
We present an end-to-end and accurate pipeline for RR estimation using Cycle Generative Adversarial Networks (CycleGAN)
arXiv Detail & Related papers (2021-05-03T01:16:32Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.