RespDiff: An End-to-End Multi-scale RNN Diffusion Model for Respiratory Waveform Estimation from PPG Signals
- URL: http://arxiv.org/abs/2410.04366v1
- Date: Sun, 6 Oct 2024 05:54:49 GMT
- Title: RespDiff: An End-to-End Multi-scale RNN Diffusion Model for Respiratory Waveform Estimation from PPG Signals
- Authors: Yuyang Miao, Zehua Chen, Chang Li, Danilo Mandic,
- Abstract summary: We propose RespDiff, an end-to-end multi-scale RNN model for respiratory waveform estimation from PPG signals.
The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform.
Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation.
- Score: 3.306437812367815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Respiratory rate (RR) is a critical health indicator often monitored under inconvenient scenarios, limiting its practicality for continuous monitoring. Photoplethysmography (PPG) sensors, increasingly integrated into wearable devices, offer a chance to continuously estimate RR in a portable manner. In this paper, we propose RespDiff, an end-to-end multi-scale RNN diffusion model for respiratory waveform estimation from PPG signals. RespDiff does not require hand-crafted features or the exclusion of low-quality signal segments, making it suitable for real-world scenarios. The model employs multi-scale encoders, to extract features at different resolutions, and a bidirectional RNN to process PPG signals and extract respiratory waveform. Additionally, a spectral loss term is introduced to optimize the model further. Experiments conducted on the BIDMC dataset demonstrate that RespDiff outperforms notable previous works, achieving a mean absolute error (MAE) of 1.18 bpm for RR estimation while others range from 1.66 to 2.15 bpm, showing its potential for robust and accurate respiratory monitoring in real-world applications.
Related papers
- DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation [68.55191764622525]
Diffusion models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling.
Recent predictor synthesis-or diffusion samplers have significantly reduced the required number of evaluations, but inherently suffer from a misalignment issue.
We introduce a new fast DPM sampler called DC-CPRr, which leverages dynamic compensation to mitigate the misalignment.
arXiv Detail & Related papers (2024-09-05T17:59:46Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort [55.41644538483948]
This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT.
Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries.
arXiv Detail & Related papers (2023-07-03T18:06:36Z) - PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models [6.157700936357335]
Photoplethysthy (mography) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy.
However, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling.
In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices.
arXiv Detail & Related papers (2023-03-23T19:47:36Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
We introduce a customized design for slim diffusion probabilistic models (DPM) for light-weight image synthesis.
We achieve 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks.
arXiv Detail & Related papers (2022-11-27T16:27:28Z) - RRWaveNet: A Compact End-to-End Multi-Scale Residual CNN for Robust PPG
Respiratory Rate Estimation [0.6464087844700315]
Respiratory rate (RR) is an important biomarker as RR changes can reflect severe medical events such as heart disease, lung disease, and sleep disorders.
Standard RR counting is prone to human error and cannot be performed continuously.
This study proposes a method for continuously estimating RR, RRWaveNet.
arXiv Detail & Related papers (2022-08-18T07:11:34Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - An End-to-End and Accurate PPG-based Respiratory Rate Estimation
Approach Using Cycle Generative Adversarial Networks [6.248335775936125]
Respiratory rate (RR) is a clinical sign representing ventilation.
We present an end-to-end and accurate pipeline for RR estimation using Cycle Generative Adversarial Networks (CycleGAN)
arXiv Detail & Related papers (2021-05-03T01:16:32Z) - Non-contact PPG Signal and Heart Rate Estimation with Multi-hierarchical
Convolutional Network [12.119293125608976]
Heart rate (HR) are important physiological parameters of the human body.
This study presents an efficient multi-archhierical- convolutional network that can estimate HR from face video clips.
arXiv Detail & Related papers (2021-04-06T03:04:27Z) - A Novel Non-Invasive Estimation of Respiration Rate from
Photoplethysmograph Signal Using Machine Learning Model [0.0]
Respiration rate (RR) is a vital indicator of the wellness of a patient.
Real-time continuous RR monitoring facility is only available at the intensive care unit (ICU)
Recent researches have proposed Photoplethysmogram (ECG) and/ Electrocardiogram (ECG) signals for RR estimation.
This paper describes a novel approach to RR estimation using machine learning (ML) models with the PPG signal features.
arXiv Detail & Related papers (2021-02-18T17:08:50Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.