論文の概要: Aircraft Loading Optimization -- QUBO models under multiple constraints
- arxiv url: http://arxiv.org/abs/2102.09621v2
- Date: Mon, 22 Feb 2021 11:15:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-10 23:46:21.529074
- Title: Aircraft Loading Optimization -- QUBO models under multiple constraints
- Title(参考訳): 航空機の負荷最適化 -複数制約下でのQUBOモデル-
- Authors: Giovanni Pilon, Nicola Gugole, Nicola Massarenti
- Abstract要約: 我々は量子アニーラーと互換性のあるQUBO方程式に基づくモデルを開発する。
次に、現在の技術の性能と能力を評価するために、異なるソルバ上でモデルをベンチマークした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this submission we solve the Aircraft Loading Optimization problem of the
Airbus Quantum Computing Challenge. Finding the optimal loading for a plane is
a challenging task for classical algorithms, especially because the solution
must respect several flight constraints. The contribution of this work is
formulating this problem and its constraints in a model based on QUBO equations
which are compatible with quantum annealers. We then benchmarked the model on
different solvers to evaluate the performances and capabilities of current
technologies.
- Abstract(参考訳): 本稿では,airbus quantum computing challengeの航空機載荷最適化問題を解く。
平面の最適荷重を見つけることは、古典的なアルゴリズムにとって難しい課題であり、特に、解はいくつかの飛行制約を尊重しなければならない。
この研究の貢献は、量子アニールと互換性のあるQUBO方程式に基づくモデルでこの問題とその制約を定式化することである。
次に、現在の技術の性能と能力を評価するために、異なるソルバ上でモデルをベンチマークした。
関連論文リスト
- Quantum Algorithms for Drone Mission Planning [0.0]
ミッションプランニングはしばしば、一連のミッション目標を達成するためにISR(Intelligence, Surveillance and Reconnaissance)資産の使用を最適化する。
このような解を見つけることはNP-Hard問題であり、古典的なコンピュータでは効率的に解けないことが多い。
我々は、現在の古典的手法に対してスピードアップを提供する可能性のある、短期量子アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2024-09-27T10:58:25Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Deriving Compact QUBO Models via Multilevel Constraint Transformation [0.8192907805418583]
そこで本稿では,QUBOモデルに基づくMLCTS(Multilevel Constraint Transformation Scheme)を提案する。
概念実証では、後者の問題に対する2つのQUBOモデルの性能を、汎用ソフトウェアベースソルバとハードウェアベースのQUBOソルバで比較する。
MLCTS由来のモデルは、ハードウェアベースのアプローチで最大7倍のインスタンスを解くことで、両方のソルバのパフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2024-04-04T17:34:08Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
我々は、キャパシタントカー問題(CVRP)またはその減量版であるトラベリングセールスパーソン問題(TSP)について議論する。
今日の最も強力な古典的アルゴリズムでさえ、CVRPは古典的解決が難しい。
量子コンピューティングは、ソリューションの時間を改善する手段を提供するかもしれない。
論文 参考訳(メタデータ) (2023-04-19T13:03:50Z) - Towards Finding an Optimal Flight Gate Assignment on a Digital Quantum
Computer [0.3324986723090369]
最適飛行ゲート割り当て問題に対する変分量子固有解器(VQE)の性能について検討する。
提案手法は,高い確率で優れた解を求めることができることを示す。
我々は, エンタングルメントの役割について検討し, エンタングルゲートに接することで, 純粋な製品状態よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-02-22T19:00:12Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。