論文の概要: Quantum Algorithms for Drone Mission Planning
- arxiv url: http://arxiv.org/abs/2409.18631v1
- Date: Fri, 27 Sep 2024 10:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 19:54:56.548630
- Title: Quantum Algorithms for Drone Mission Planning
- Title(参考訳): ドローン計画のための量子アルゴリズム
- Authors: Ethan Davies, Pranav Kalidindi,
- Abstract要約: ミッションプランニングはしばしば、一連のミッション目標を達成するためにISR(Intelligence, Surveillance and Reconnaissance)資産の使用を最適化する。
このような解を見つけることはNP-Hard問題であり、古典的なコンピュータでは効率的に解けないことが多い。
我々は、現在の古典的手法に対してスピードアップを提供する可能性のある、短期量子アルゴリズムについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives within allowed parameters subject to constraints. The missions of interest here, involve routing multiple UAVs visiting multiple targets, utilising sensors to capture data relating to each target. Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers. Furthermore, during the mission new constraints and objectives may arise, requiring a new solution to be computed within a short time period. To achieve this we investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods. We demonstrate how a large family of these problems can be formulated as a Mixed Integer Linear Program (MILP) and then converted to a Quadratic Unconstrained Binary Optimisation (QUBO). The formulation provided is versatile and can be adapted for many different constraints with clear qubit scaling provided. We discuss the results of solving the QUBO formulation using commercial quantum annealers and compare the solutions to current edge classical solvers. We also analyse the results from solving the QUBO using Quantum Approximate Optimisation Algorithms (QAOA) and discuss their results. Finally, we also provide efficient methods to encode to the problem into the Variational Quantum Eigensolver (VQE) formalism, where we have tailored the ansatz to the problem making efficient use of the qubits available.
- Abstract(参考訳): ミッションプランニングはしばしば、制約を受ける許容パラメータ内のミッション目標のセットを達成するために、ISR(Intelligence, Surveillance and Reconnaissance)資産の使用を最適化する。
ここでのミッションは、複数のUAVが複数のターゲットを訪れ、センサーを使用して各ターゲットに関連するデータをキャプチャすることである。
このような解を見つけることはNP-Hard問題であり、古典的なコンピュータでは効率的に解けないことが多い。
さらに、ミッション中に新しい制約や目的が生まれ、短時間で新しいソリューションが計算される必要がある。
これを実現するために、現在の古典的手法に対してスピードアップを提供する可能性のある、短期量子アルゴリズムについて検討する。
本研究では,これらの問題をMILP(Mixed Integer Linear Program)として定式化し,擬似非制約バイナリ最適化(QUBO)に変換する方法を示す。
提供される定式化は万能であり、明快な量子ビットスケーリングで多くの異なる制約に適応することができる。
商用量子アニーラーを用いたQUBO定式化の解法について検討し、その解法を現在のエッジ古典解法と比較する。
また、量子近似最適化アルゴリズム(QAOA)を用いてQUBOを解く結果を分析し、その結果について議論する。
最後に,この問題を変分量子固有解法(VQE)形式にエンコードする効率的な方法を提案する。
関連論文リスト
- Reinforcement Learning for Variational Quantum Circuits Design [10.136215038345012]
変分量子アルゴリズムは、量子コンピュータの最適化問題を解くための有望なツールとして登場した。
本研究では、強力で柔軟な強化学習パラダイムを活用し、量子回路を自律的に生成できるエージェントを訓練する。
以上の結果から,最大カット問題に対して,R_yz$接続回路は高い近似比が得られることが示唆された。
論文 参考訳(メタデータ) (2024-09-09T10:07:12Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Optimization Methods for Satellite Mission Planning [0.3252295747842729]
軌道上の衛星の増大は、それらを効率的に運用する必要性を浮き彫りにしている。
現在の古典的アルゴリズムは、大域的な最適化を見つけられなかったり、実行するのに時間がかかりすぎたりすることが多い。
ここでは、量子コンピューティングの観点からこの問題にアプローチし、有望な代替手段を提供する。
論文 参考訳(メタデータ) (2024-04-08T13:36:29Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - Larger Sparse Quadratic Assignment Problem Optimization Using Quantum
Annealing and a Bit-Flip Heuristic Algorithm [0.4125187280299248]
線形制約は、量子アニールで表現できる問題のサイズを減らす。
オーゼキ法により得られた解に対して,後処理ビットフリップアルゴリズムを適用し,スパースQAPの解法を提案する。
D-Wave Advantage を用いて,D-Wave Advantage を用いた QAP の高精度化に成功した。
論文 参考訳(メタデータ) (2020-12-18T09:48:28Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。