A Deep Graph Wavelet Convolutional Neural Network for Semi-supervised
Node Classification
- URL: http://arxiv.org/abs/2102.09780v1
- Date: Fri, 19 Feb 2021 07:57:28 GMT
- Title: A Deep Graph Wavelet Convolutional Neural Network for Semi-supervised
Node Classification
- Authors: Jingyi Wang, Zhidong Deng
- Abstract summary: Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data.
We propose a new deep graph wavelet convolutional network (DeepGWC) for semi-supervised node classification tasks.
- Score: 11.959997989844043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolutional neural network provides good solutions for node
classification and other tasks with non-Euclidean data. There are several graph
convolutional models that attempt to develop deep networks but do not cause
serious over-smoothing at the same time. Considering that the wavelet transform
generally has a stronger ability to extract useful information than the Fourier
transform, we propose a new deep graph wavelet convolutional network (DeepGWC)
for semi-supervised node classification tasks. Based on the optimized static
filtering matrix parameters of vanilla graph wavelet neural networks and the
combination of Fourier bases and wavelet ones, DeepGWC is constructed together
with the reuse of residual connection and identity mappings in network
architectures. Extensive experiments on three benchmark datasets including
Cora, Citeseer, and Pubmed are conducted. The experimental results demonstrate
that our DeepGWC outperforms existing graph deep models with the help of
additional wavelet bases and achieves new state-of-the-art performances
eventually.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification [6.977634174845066]
A universal feature encoder for both graph and hypergraph representation learning is designed, called UniG-Encoder.
The architecture starts with a forward transformation of the topological relationships of connected nodes into edge or hyperedge features.
The encoded node embeddings are then derived from the reversed transformation, described by the transpose of the projection matrix.
arXiv Detail & Related papers (2023-08-03T09:32:50Z) - Path Integral Based Convolution and Pooling for Heterogeneous Graph
Neural Networks [2.5889737226898437]
Graph neural networks (GNN) extends deep learning to graph-structure dataset.
Similar to Convolutional Neural Networks (CNN) using on image prediction, convolutional and pooling layers are the foundation to success for GNN on graph prediction tasks.
arXiv Detail & Related papers (2023-02-26T20:05:23Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Adaptive Filters in Graph Convolutional Neural Networks [0.0]
Graph Neural Networks (GNN) have gained a high interest because of their potential in processing graph-structured data.
This paper presents a novel method to adapt the behaviour of a ConvGNN to the input proposing a method to perform spatial convolution on graphs.
arXiv Detail & Related papers (2021-05-21T14:36:39Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.