UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification
- URL: http://arxiv.org/abs/2308.01650v1
- Date: Thu, 3 Aug 2023 09:32:50 GMT
- Title: UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification
- Authors: Minhao Zou, Zhongxue Gan, Yutong Wang, Junheng Zhang, Dongyan Sui,
Chun Guan, Siyang Leng
- Abstract summary: A universal feature encoder for both graph and hypergraph representation learning is designed, called UniG-Encoder.
The architecture starts with a forward transformation of the topological relationships of connected nodes into edge or hyperedge features.
The encoded node embeddings are then derived from the reversed transformation, described by the transpose of the projection matrix.
- Score: 6.977634174845066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph and hypergraph representation learning has attracted increasing
attention from various research fields. Despite the decent performance and
fruitful applications of Graph Neural Networks (GNNs), Hypergraph Neural
Networks (HGNNs), and their well-designed variants, on some commonly used
benchmark graphs and hypergraphs, they are outperformed by even a simple
Multi-Layer Perceptron. This observation motivates a reexamination of the
design paradigm of the current GNNs and HGNNs and poses challenges of
extracting graph features effectively. In this work, a universal feature
encoder for both graph and hypergraph representation learning is designed,
called UniG-Encoder. The architecture starts with a forward transformation of
the topological relationships of connected nodes into edge or hyperedge
features via a normalized projection matrix. The resulting edge/hyperedge
features, together with the original node features, are fed into a neural
network. The encoded node embeddings are then derived from the reversed
transformation, described by the transpose of the projection matrix, of the
network's output, which can be further used for tasks such as node
classification. The proposed architecture, in contrast to the traditional
spectral-based and/or message passing approaches, simultaneously and
comprehensively exploits the node features and graph/hypergraph topologies in
an efficient and unified manner, covering both heterophilic and homophilic
graphs. The designed projection matrix, encoding the graph features, is
intuitive and interpretable. Extensive experiments are conducted and
demonstrate the superior performance of the proposed framework on twelve
representative hypergraph datasets and six real-world graph datasets, compared
to the state-of-the-art methods. Our implementation is available online at
https://github.com/MinhZou/UniG-Encoder.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Hypergraph Echo State Network [0.0]
A hypergraph as a generalization of graphs records higher-order interactions among nodes, yields a more flexible network model, and allows non-linear features for a group of nodes.
We propose a hypergraph echo state network (HypergraphESN) as a generalization of graph echo state network (GraphESN) for efficient processing of hypergraph-structured data.
arXiv Detail & Related papers (2023-10-16T08:35:23Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.